ブログ内検索

micro:bitページ
とにかく速いブログサイトを目指す
検索キーワード:「火山ガラス」
 

灰色の軽石

/** Geminiが自動生成した概要 **/
沖縄県に漂着した軽石の成分分析によると、有害金属は検出されておらず、農業利用の基準値も下回っている。しかし、海水由来の塩化物イオン濃度が高く、農業利用には脱塩処理が必要。また、軽石の組成は産地によって異なり、福徳岡ノ場由来の軽石はSiO2含有量が少なく、CaO、Na2O、K2Oが多い。鉄の含有量は火山ガラスの色で判断でき、灰色は白色より鉄分が多い。今後、風化の影響や長期的安全性を検証する必要性があり、現時点では農業利用を推奨していない。産業利用も慎重な検討が必要。

 

鹿沼土を粉砕してみた2

/** Geminiが自動生成した概要 **/
鹿沼土(鹿沼降下軽石)を粉砕し、その構成要素を観察した。鹿沼土は3.2万年前の赤城山の噴火によるもので、火山ガラス、輝石、角閃石が含まれる。火山ガラスは形状が様々で、鹿沼土中の層状に見えたものは繊維状の火山ガラスだと推測された。粉砕により火山ガラスのイメージが掴みやすくなり、他地域の軽石との比較で更なる理解が期待される。

 

軽石は酸化するのか?

/** Geminiが自動生成した概要 **/
軽石の主成分である火山ガラスには鉄などの不純物が含まれ、水が作用することで酸化される可能性がある。酸化により火山ガラスが脆くなるかどうかは不明だが、不純物の酸化が風化に影響を与えるかもしれない。

 

軽石の化学的風化の内の水の作用について

/** Geminiが自動生成した概要 **/
庭の軽石の表面の茶色い部分は風化によってできた粘土鉱物ではないかと考え、軽石の風化を早める方法を模索している。軽石の主成分である火山ガラスは、化学的風化(加水分解)によって水と反応し、粘土鉱物に変化する。水に浸けるだけでは時間がかかりすぎるため、より効率的な風化方法を探している。

 

軽石の表面がうっすらと茶色い

/** Geminiが自動生成した概要 **/
アロフェンは火山灰土壌に特有の粘土鉱物で、リン酸吸収力が高く、植物の生育に重要です。微細な球状構造で、内部に空洞を持つため、保水性と通気性を両立します。また、陽イオン交換容量も高く、土壌肥沃度に貢献します。 しかし、リン酸を強く吸着するため、植物が利用しにくい形態で固定される欠点も持ちます。このため、アロフェン質土壌ではリン酸肥料の施用が重要となります。生成は火山ガラスの風化に由来し、腐植との相互作用も影響します。

 

アロフェンと活性アルミナ

/** Geminiが自動生成した概要 **/
火山灰土壌に特徴的なアロフェンは、風化すると層状の粘土鉱物であるカオリナイトに変化します。この過程で、アロフェンの構造中の余剰なアルミニウム(Al)が活性アルミナとして遊離します。 アロフェンは、内側に少ないケイ素(Si)、外側に多くのAlを持つ構造です。風化によってAlが外れることで構造が変化し、カオリナイトのような層状構造が形成されます。 この活性アルミナは植物の根の成長に悪影響を与える可能性があり、火山灰土壌での栽培では注意が必要です。特に、アロフェンを多く含む黒ボク土では、活性アルミナの量が多くなる傾向があります。

 

火山ガラスとは何か?

/** Geminiが自動生成した概要 **/
火山ガラスは、急速に冷えたマグマからできる非晶質な物質です。黒曜石や軽石などがあり、風化すると粘土鉱物であるアロフェンに変化します。軽石は風化すると茶色い粘土になり、これはアロフェンを含んでいます。このことから、軽石を堆肥に混ぜると、アロフェンが生成され団粒構造の形成を促進し、堆肥の質向上に役立つ可能性があります。軽石の有効活用として期待されます。

 

アロフェンのCECとAEC

/** Geminiが自動生成した概要 **/
アロフェンは、外側にAl、内側にSiが配置する独特な構造を持つ粘土鉱物です。Alによる正電荷とSiによる負電荷が、特徴的なAECを示します。また、Si-O結合の不規則な切断(Broken-bond defects)により、高いCECを示します。アロフェンは火山ガラスだけでなく、長石の風化過程で生成されることもあります。

 

注目の資材、ゼオライトについて再び

/** Geminiが自動生成した概要 **/
ゼオライトは、沸石とも呼ばれる多孔質のアルミノケイ酸塩鉱物で、粘土鉱物のように扱われるが粘土鉱物ではない。凝灰岩などの火山岩が地中に埋没し、100℃程度の熱水と反応することで生成される。イオン交換性や吸着性を持つ。記事では、凝灰岩が熱水変質によってゼオライトや粘土鉱物などに変化する過程が解説され、同じ火山灰でも生成環境によって異なる鉱物が形成されることが示されている。ベントナイト系粘土鉱物肥料の原料である緑色凝灰岩とゼオライトの関連性にも触れられている。

 

風化した斑れい岩を観察する前に斑れい岩について整理しよう

/** Geminiが自動生成した概要 **/
竹野海岸のグリーンタフ(緑色凝灰岩)は、日本海形成時の火山活動で噴出した火山灰が海底に堆積し、熱水作用で変質した岩石。その緑色は、含まれる鉱物中の鉄イオンが酸化第二鉄から酸化第一鉄に変化したため。風化すると褐色になる。 グリーンタフは、その形成過程から、当時の日本海の環境や地殻変動を知る上で重要な手がかりとなる。周辺には、グリーンタフが風化してできた粘土質の土壌が広がり、水はけが悪く、稲作には不向きだが、果樹栽培などに適している。 記事では、グリーンタフを観察しながら、岩石の風化と土壌形成のプロセス、そして地域の農業との関連について考察している。火山活動が生み出した岩石が、長い時間をかけて土壌へと変化し、地域の産業に影響を与えていることを示す好例と言える。

 

粘土鉱物が出来る場所

/** Geminiが自動生成した概要 **/
凝灰岩が地下深くに埋没し、熱水変質作用を受けることで粘土鉱物が生成される。熱源の深さや熱水の流動性、水素イオン濃度、温度などが生成される粘土鉱物の種類(スメクタイト、沸石など)に影響する。山陰地方で産出される沸石凝灰岩は土壌改良材として利用される。モンモリロナイトや沸石は、凝灰岩が熱水変質作用を受けた後、地質学的イベントで隆起し地表に出現することで採掘可能になる。これらの粘土鉱物を土壌に投入すると、非アロフェン質の黒ボク土へと変化する可能性がある。

 

崩れてもなお硬い小石たち

/** Geminiが自動生成した概要 **/
開聞岳周辺の畑土壌には、火山由来の硬い小石が多く含まれており、農業機械の刃を痛めるため厄介な存在となっています。 これらの小石は、開聞岳の安山岩質の火砕物と推測され、風化途中のものも多く見られます。安山岩には、植物の生育に必要なミネラルが含まれており、風化によって土壌に供給されると期待されます。 しかし、石の風化は時間がかかるため、農業経営上は速やかな風化と、溶け出した養分の保持が課題となります。

 

黒ボク土の活性アルミナ対策としてのリン酸施肥

/** Geminiが自動生成した概要 **/
苦土(マグネシウム)は植物の生育に必須で、葉緑素の構成要素やリン酸吸収を助ける役割を持つ。土壌中の苦土は、粘土鉱物や腐植に吸着された交換性苦土として存在し、植物はこれを利用する。しかし、火山灰土壌では交換性苦土が少なく、リン酸過剰やカリウム過剰によって苦土欠乏症が発生しやすい。土壌分析で交換性苦土が1.5cmol/kg以下なら欠乏の注意が必要。対策として、苦土肥料の施用が有効だが、土壌pHや他の養分とのバランスも考慮する必要がある。特に、リン酸とカリウムは苦土の吸収を阻害するため、過剰施用は避けるべき。苦土欠乏は葉脈間が黄化するなどの症状で現れるため、早期発見と適切な対応が重要。

 

粘土鉱物を理解する旅2

/** Geminiが自動生成した概要 **/
粘土鉱物の理解を深めるため、各地のジオパークや博物館で得た情報をもとに、土壌における役割を考察している。地震や火山活動により長石などのアルミノ珪酸塩が粘土鉱物に変質する過程に着目し、図鑑で長石の種類や変質経路を調べた。温泉のpH変化と粘土鉱物の関係、黒ボク土のアロフェンと非アロフェンの起源にも触れ、どちらもアルミノ珪酸塩の二次鉱物であることを指摘。最終的に、アルミノ珪酸塩の分布と火成岩の関係へと議論を展開する。

 

黒ボク土は本当に良い土なのか?前編

/** Geminiが自動生成した概要 **/
黒ボク土は通気性・保水性に優れる反面、アルミニウム障害という問題を抱えています。本稿では、黒ボク土の形成過程を、粘土鉱物であるアロフェンと非アロフェンに着目して解説しています。黒ボク土は、玄武岩質火山灰を基材とし、アロフェン質と非アロフェン質に分類されます。非アロフェン質はベントナイトなどの2:1型粘土鉱物ですが、アロフェン質は火山ガラスから生成されるアロフェンを含みます。アロフェンの生成には玄武岩質火山灰由来の成分が関与していると考えられています。


Powered by SOY CMS   ↑トップへ