ブログ内検索

micro:bitページ
とにかく速いブログサイトを目指す

カテゴリー : 地形・地質/page-9

 

天川村洞川の鉄鉱跡にて

/** Geminiが自動生成した概要 **/
奈良県天川村洞川の廃坑となった五代松鉱山跡を訪ねた。鉄鉱山跡の近隣に鍾乳洞が存在することに疑問を抱き、周辺の岩石を観察した。白い花崗岩らしき岩石を発見し、地質図を確認すると鉱山付近は花崗岩質深成岩、隣接地域は堆積岩(付加体)だった。花崗岩と鉄の関係、鍾乳洞の存在理由など、疑問は深まるばかり。近隣の採石業者から得た情報もあるため、詳細は次回へ続く。

 

火山灰に含まれる鉄の磁気

/** Geminiが自動生成した概要 **/
植物に磁気が影響を与えるという前提で、土壌中の磁鉄鉱含有量に着目し、桜島の火山灰を例に検証した。真砂土は磁鉄鉱含有量が少ない一方、桜島の火山灰は論文でも多く含むとされている。実際に火山灰に鉄を近づけると砂鉄のように付着し、磁鉄鉱の存在を確認できた。火山灰の磁鉄鉱が作物成長を促進し、他の鉱物と相まって桜島の大型作物に繋がっている可能性を考察。土壌中の鉱物由来の磁気が植物に与える影響度合いは未解明であるとした。

 

ブルカノ式火山の火山灰の土としてのポテンシャル

/** Geminiが自動生成した概要 **/
桜島の火山灰は、地元住民の言葉通り農作物に良い影響を与えている。ブルカノ式噴火による安山岩質の火山灰は、シラスとは異なり石英が少ない。その主成分は角閃石、輝石、磁鉄鉱、ガラス質で、黒色土壌を形成する。角閃石と輝石は鉄やマグネシウムを豊富に含み、植物の生育に有益だ。また、ガラス質が少ないため腐植蓄積も期待できる。実際に桜島大根の畑の土壌は軽く、腐植とよく混ざり合っており、良質な作物の収穫を裏付けている。火山灰はミネラル豊富な土壌改良材として機能し、桜島の農業を支えていると言える。

 

桜島と火山灰

/** Geminiが自動生成した概要 **/
鹿児島中央での勉強会後、桜島へ渡りシラス台地を観察しようと試みた。桜島はブルカノ式火山のため、安山岩や火山灰由来の凝灰岩が多く、黒っぽい石や土壌が目立った。しかし、土壌をよく見ると白い鉱物が含まれており、ガラス質であることが確認できた。これは、無色の鉱物が黒い鉱物を反射し、全体が黒っぽく見えるためだと推測された。しかし、訪れた場所はシラス台地ではなく、時間の都合上、白い台地へは行けなかった。

 

水辺に堆積した泥の上

/** Geminiが自動生成した概要 **/
岩場の小川で、滝つぼのように水が流れ落ち土が削られた場所に、タネツケバナが開花している。種子は、水流で運ばれたのか、元々川底に埋まっていたのか。水没した低酸素環境でも種子は休眠できるのか。このような厳しい環境で発芽・開花できた要因は何か。

 

紅土と黒ボクを見て思い出す師の言葉

/** Geminiが自動生成した概要 **/
剪定枝の山積みによる腐植蓄積メカニズムが、黒ボク土壌形成過程と類似している点が考察されています。黒ボク土壌は低温環境での有機物分解の遅延により形成されますが、剪定枝山積みでも、酸素が少ない条件下で木質資材が分解され、腐植が生成されます。この際、フェノール性化合物が生成され、腐植の構成要素となる可能性が示唆されています。山積み一年後、腐植の乏しい土壌で黒ボク特有のボクボク音が確認され、無酸素状態での腐植蓄積効果が実証されました。この手法は、粘土質で有機物の少ない土壌で特に有効であり、大陸の赤い土壌改良への応用が期待されます。また、冬季の低温による分解抑制と、山積み内部の発酵熱による分解促進のバランスも重要です。

 

宝山の土から紅土を考える

/** Geminiが自動生成した概要 **/
宝山の赤い土から大陸の紅土について考察。宝山の赤い土は玄武岩質噴出物の鉄分が酸化したもの。一方、紅土(ラテライト)は高温多湿な気候で、鉄・アルミニウム水酸化物が集積した痩せ土。宝山周辺は黒ボク土だが、紅土は保肥力の低いカオリナイトが主成分で、鉄酸化物と相まって栄養分が溶脱しやすい。さらに高温環境では有機物の分解が早く腐植も蓄積されないため、赤い鉄酸化物が目立つ。つまり、母岩は類似していても、気候条件の違いが土壌形成に大きく影響する。

 

赤い土のエリアの一画に白い石

/** Geminiが自動生成した概要 **/
夜久野高原の宝山は玄武岩質火山で、赤い土壌とスコリアが見られる。しかし、場所によっては白い軽石が集まっているエリアが存在する。玄武岩は二酸化ケイ素含有量が少ないため粘性が低く、山は低く広がる。宝山の石は二酸化ケイ素が少ないように見えるが、白い軽石の存在は二酸化ケイ素がマグマ内で均一ではなく、局所的に集まることを示している。この事実は、土壌成分の偏りを示唆し、栽培にも重要な情報となる。

 

夜久野高原の宝山の麓に落ちていた緑の石

/** Geminiが自動生成した概要 **/
夜久野高原の宝山で採取した緑色の石の正体を考察する記事です。宝山は玄武岩質の火山で、麓の土は黒、壁面の土は赤です。採取した石の中には、山頂付近のスコリア、内部が割れて出てきたと推測される玄武岩がありました。注目すべきは全体的に緑色の石で、筆者はマグネシウムを含む鉱物、または粘土を含むチャートではないかと推測します。チャートの可能性は光沢がないことから否定し、火山であることから超塩基性火山岩コマチアイトの可能性を検討します。コマチアイトの画像と類似していることから、コマチアイトの可能性が高くなります。また、玄武岩マグマの冷却初期にかんらん石ができるとの記述から、かんらん石の可能性も示唆されます。コマチアイトとかんらん石はどちらもマグネシウムを豊富に含むため、緑色の石はマグネシウムを多く含むと結論づけられます。宝山は二酸化ケイ素が少ない超塩基性岩で、鉄とマグネシウムを豊富に含むことから、京都の一般的な土地とは異なる特性を持つと考察しています。

 

玄武岩質的な火山灰土壌の色は黒だった

/** Geminiが自動生成した概要 **/
夜久野高原の宝山付近で赤い土を確認後、周辺の畑の土壌を観察したところ、黒い黒ボク土であった。黒ボク土は玄武岩質火山灰、腐植、冷涼な気候が条件となるが、宝山は冬季に雪が残るため条件を満たす。大陸の赤い土とは異なり、水分豊富な日本では赤い土壌の形成は難しい。奄美大島など一部地域を除き、良質な土壌の条件は局所的である。宝山から車で10分ほど移動すると京都特有の白い土壌に変化し、土壌の違いを改めて実感した。日本シームレス地質図を活用すれば、このような土壌分布の理解が深まる。

 

夜久野高原の宝山の火口付近で赤い土を見た

/** Geminiが自動生成した概要 **/
夜久野高原の宝山(田倉山)は、府内唯一の火山でスコリア丘。玄武岩質の溶岩が風化し、赤い土壌が確認できた。山麓は黒ボク土で、山頂付近になるにつれ赤茶色の土壌が目立つ。火口付近ではスコリアが多く見られ、ストロンボリ式噴火の特徴を示す形状が確認できた。宝山は玄武岩の成り立ち、スコリア丘の形成、土壌の変化を観察できる貴重な場所である。

 

苦土があるところ

/** Geminiが自動生成した概要 **/
京都市内の農家で、慣行農法の土壌に苦土肥料(水マグ)を施用することで、カルシウム過剰による生育不良を劇的に改善した事例が紹介されています。現代農業では土壌pH調整に石灰を多用するためカルシウム過剰になりがちで、結果としてカルシウム欠乏症に陥り、秀品率が低下することが問題となっています。カルシウムを含まない苦土肥料を用いることで、pH調整とマグネシウム補給を同時に行い、この問題を解決できる可能性が示唆されています。水マグの原料である水滑石は蛇紋岩から産出するため、地質図を活用することで産地を特定し、土壌改良に役立てられる可能性も示唆しています。この事例は、現代農業の慣行を見直し、土壌管理の重要性を改めて認識させるものとなっています。

 

石炭の出来るところ

/** Geminiが自動生成した概要 **/
石炭は、湿地帯で植物の死骸が分解されずに蓄積し、泥炭となった後、圧力によって生成される。分解を防ぐには、酸素が少ない水中環境が重要となる。炭鉱のように地層の中に石炭層が形成されるには、湿地帯の沈降と堆積の繰り返しが必要である。石炭に含まれる硫黄は、植物体内のタンパク質や、周辺生物の死骸、自然発生した硫酸に由来すると考えられる。そのため、動物由来の重油に比べ、石炭は燃焼時の硫酸発生が少ない。

 

鉱物は栽培上の問題の解決案を教えてくれる

/** Geminiが自動生成した概要 **/
牛糞堆肥は土壌改良に有効とされるが、窒素過多による生育阻害、雑草種子混入、病害虫リスク、臭気問題などデメリットも多い。特に老朽化水田のような硫化鉄(II)を含む土壌では、牛糞堆肥の窒素により硫化水素が発生し、根腐れを引き起こす可能性がある。さらに、牛糞堆肥の分解過程で生成されるアンモニアは土壌pHを一時的に上昇させ、硫化水素発生を促進する。したがって、老朽化水田の改良には牛糞堆肥ではなく、腐植酸やミネラル豊富な堆肥を選択するべきである。

 

吉備津神社の矢置岩

/** Geminiが自動生成した概要 **/
吉備津神社の矢置岩を訪問した著者は、神社背後の山が堆積岩と花崗岩から成る隆起地形であることを地質図で確認した。この経験から、花崗岩地帯の土壌が白いという推測を立て、実際に現地で白い土壌を多数確認、地図情報と一致することを確認した。この発見により、未知の土地の地質を予測する可能性が広がったと結論付けている。

 

川の上流で石の下に溜まった土?

/** Geminiが自動生成した概要 **/
川の上流の石の下には、風化した砂や粘土、落葉などが混ざった川砂がある。これは良質な粘土と腐植を含み、砂の大きさもトラクターの刃を傷つけない程度であるため、客土として畑に入れるメリットがある。川砂の粘土は保水性を高め、腐植は土壌生物の活動を促進し、団粒構造の形成を助ける。適切な大きさの砂は水はけを良くし、通気性を確保する。これらにより、水はけと水持ちのバランスが良くなり、肥沃な土壌が作られる。つまり、川砂は土壌改良に有効な資源と言える。

 

いわくらとチャート

/** Geminiが自動生成した概要 **/
京都北部の岩倉にある山住神社で、基盤岩であるチャートを観察した。茶色のチャートは酸化鉄を含み、周辺の土壌の色にも影響を与えていると考えられる。木の根元の土壌は教科書通りの茶色よりやや薄く、京都で見られる茶色っぽい土壌はチャート由来の可能性がある。山住神社は平安時代に石座神社に遷された歴史を持つ。

 

礫岩に詰まった大切な資源

/** Geminiが自動生成した概要 **/
土壌中のアルミニウムは、腐植の分解を抑制し土壌中に長期間貯蔵する役割を果たす。腐植は植物遺体などが微生物によって分解されたもので、土壌の肥沃度や保水性に大きく貢献する。しかし、腐植は微生物によってさらに分解され、二酸化炭素として大気中に放出される。アルミニウムイオンは、腐植の分子と結合し、微生物による分解から守る。特に酸性土壌ではアルミニウムイオンが溶出しやすく、この保護作用が顕著になる。このメカニズムは、土壌炭素貯留の観点から地球温暖化対策としても重要である。アルミニウムと腐植の相互作用を理解することは、持続可能な農業や環境保全に繋がる。

 

土質の理解を求め川の上流へ

/** Geminiが自動生成した概要 **/
山を構成する岩石は、風化・侵食によって細粒化し、最終的に粘土になる。花崗岩は風化に弱く、構成鉱物の剥離によって真砂土と呼ばれる粗い砂状になる。これがさらに風化すると、様々な鉱物が含まれた粘土へと変化する。堆積岩である頁岩は、粘土が固まったものだが、これも風化によって再び粘土に戻る。つまり、岩石の種類に関わらず、風化・侵食の過程で粘土へと変化していく。風化の進行度合いにより、様々な粒度の土壌が存在するが、最終的には粘土にたどり着く。この粘土は栄養豊富なため、植物の生育を支える重要な役割を果たす。

 

日本シームレス地質図で見えることが増えたはず

/** Geminiが自動生成した概要 **/
「日本の石ころ標本箱」を参考に、栽培の成功/失敗と地質の関係を探る試み。成功地は酸性岩土壌、失敗地はチャート主体で規則性を持つ母岩だった。サンプル数は少ないが、地質を事前調査することで栽培適地の判断材料になると考えた。産総研の日本シームレス地質図を用いて、ミネラル欠乏がない地域は超塩基性岩/塩基性岩地帯、鉄過剰症の地域は塩基性岩地帯と判明。事例は少ないが、今後各地で地質と栽培結果を比較することで、より精度の高い事前予測が可能になると期待している。関連として海底火山の痕跡についても言及。

 

客土で川砂を入れる意義

/** Geminiが自動生成した概要 **/
畑作を続けると土壌中の鉱物が溶脱し、作物に悪影響が出る。昔は米と野菜の転作、特に水田に川から水を引くことで、川水に含まれるミネラルが供給され、土壌の鉱物不足を補っていた。また、洪水も新しい鉱物を運ぶ役割を果たしていたが、洪水を人為的に再現する手段として川砂客土が生まれた。川砂はミネラル豊富な一次鉱物が多いが、二次鉱物への風化には時間がかかる。つまり、川砂客土は、水田稲作における川からのミネラル供給や、洪水による新たな鉱物の供給を人為的に再現し、土壌のミネラルバランスを維持するための伝統的な手法と言える。

 

足元がキラリと光る植物のとっての地獄

/** Geminiが自動生成した概要 **/
ブラタモリ別府温泉の回で、温泉の源である由布火口の白い土壌が映し出された。これは風化しにくい石英が残り、植物の生育に不利な環境となっている。しかし、そこでススキらしき植物が育っているのを発見。通常、石英質の土壌では緑肥も効果が薄く、植物の生育は難しい。それなのに育つススキは、土壌を選ばない強い植物として知られる。著者は、このススキこそが、不利な土壌での栽培の鍵を握るのではないかと考え、現地調査を決意する。

 

岩石が教えてくれる

/** Geminiが自動生成した概要 **/
岩石の種類が土壌の性質に大きく影響する。真砂土の母岩である花崗岩は酸性岩でシリカが多く、有機物が蓄積しにくい。関東ローム層とは異なり、関西の内陸部など花崗岩地帯では、土壌改良に工夫が必要となる。有機物を単純に投入しても効果が薄く、保肥力向上には母岩の性質を理解した対策が重要。このため、関東で研修を受けた人が関西で土壌に苦戦する一方、関西で研修を受けた人は関東で容易に適応できるという現象が生じる。岩石を知ることで、地域による土壌の違いへの理解が深まる。

 

土はどこからやってくる

/** Geminiが自動生成した概要 **/
岩に苔が生え、それが朽ちて土になる。この過程が繰り返され、長い年月をかけて黒ボク土のような肥沃な土壌が形成される。石垣の苔もいずれ土になる。しかし、岩の上の土は雨で流されやすく、窪地に溜まるか、水たまりに堆積する。つまり、土は岩の上だけでなく、岩の下にも蓄積される。堆積した土は、風化した岩石の欠片が流されてきたものと考えられる。

 

黒ボク土は良い土というイメージが共有されている

/** Geminiが自動生成した概要 **/
黒ボク土は腐植に富み、軽く、空気を取り込みやすい特徴から、栽培に適した土として認識されている。火山灰由来の鉱物に含まれるアルミニウムが腐植の分解を抑制することで、肥沃な土壌が形成される。しかし、火山灰由来であっても関東ローム層のように赤い土壌も存在する。これは火山灰の組成の違い、例えば石英の含有量などが影響すると考えられる。黒ボク土の形成には火山灰に加え、他の条件も関係しているため、より地球規模の視点、鉱物学的視点からの理解が必要とされている。

 

軽石もスコリアの一種か?

/** Geminiが自動生成した概要 **/
園芸用の軽石(日向石)の正体について考察している。Wikipediaによると、軽石は火山砕屑物で、淡色で多孔質。黒っぽいものはスコリアと呼ばれる。どちらもマグマ中の揮発成分の発泡で多孔質になるが、軽石は流紋岩質〜安山岩質由来で、スコリアに比べ鉄が少なくケイ素が多い。このため、軽石は土壌の養分や化学性に影響を与えにくく、鉢植え栽培に適している。

 

火山関連の仕事をしている方に火山灰のことを聞いてみた

/** Geminiが自動生成した概要 **/
枝は腐植になるか?の記事は、枝が分解されて腐植となる過程を検証しています。実験では、土壌に埋めた枝と地表に置いた枝の分解速度を比較。結果、土壌中の枝は1年でかなり分解が進んだ一方、地表の枝はほとんど変化が見られませんでした。これは、土壌中には分解を促進する微生物が豊富に存在する一方、地表は乾燥し微生物活動が抑制されるためです。さらに、枝の樹種による分解速度の違いも観察され、分解しやすい樹種とそうでない樹種が存在することが示唆されました。結論として、枝は土壌中で微生物の働きによって分解され腐植となるが、その速度は環境や樹種によって大きく異なることが明らかになりました。

 

空から落ちてきたニッケル隕鉄

/** Geminiが自動生成した概要 **/
玄武洞ミュージアムで展示されているアリゾナ産のニッケル隕鉄を見て、筆者は宇宙と地球の物質の共通性に思いを馳せる。隕石に含まれるニッケルや鉄は地球にも存在し、宇宙の広がりと物質の普遍性に疑問を抱く。鉄はどこまで存在するのか、宇宙の果てには異なる物理法則があるのかと思案する。そして、道端の草でさえ微生物との攻防に鉄を利用していることを想起し、身近な自然にも未知の領域が広がっていることを実感する。宇宙の壮大さと自然の精妙さ、両方の不思議に感嘆する様子が描かれている。

 

岩の中の白い模様

/** Geminiが自動生成した概要 **/
岩の白い模様は石英で、風化しにくい。石英の主成分である砂浜に有機物を投入しても蓄積されにくい。これは土壌における有機物の蓄積にも関係し、石英が多い土壌では植物性堆肥の効果は限定的だが、少ない土壌では堆肥の投入量を減らせる可能性がある。つまり、土壌の組成、特に石英の含有量は、堆肥投入量の判断基準となる。

 

人は価値の象徴として鉱物から金を取り出した

/** Geminiが自動生成した概要 **/
お金は現代社会で重要な役割を果たすが、本質的には紙や金属に皆が価値を認めることで成り立っている信用に基づく。昔は物々交換が主流だったが、希少性のある金などが交換券として使われ、持ち運びの不便さから紙幣が生まれた。自然金のような鉱物からわずかな金を見出し、価値を見出した先人の労力は、現代の貨幣経済の起源と言える。所有と交換以外の価値を持たない金に、人々が価値を見出し、それが社会の中心にあるのは不思議な現象である。そして、その不思議な金を中心とした社会で、今日も人々は働き続けている。

 

土壌のアルミニウムが腐植を守る

/** Geminiが自動生成した概要 **/
可溶性ケイ酸は植物の成長を促進する効果がある一方で、土壌中でケイ酸がどのような働きをしているかは未解明な部分が多い。ケイ酸は植物に吸収されると、細胞壁に蓄積して物理的強度を高め、病害虫や環境ストレスへの耐性を向上させる。また、ケイ酸は土壌中のアルミニウムと結合し、アルミニウム毒性を軽減する役割も持つ。さらに、ケイ酸はリン酸と鉄の可給性を高める効果も示唆されている。これらの効果は土壌の種類やpH、他の養分との相互作用に影響されるため、更なる研究が必要とされている。

 

関東ローム層は富士山の噴火の際の火山灰によるもの

/** Geminiが自動生成した概要 **/
関東ローム層は、富士山の火山灰が堆積した赤土の地層。富士山から関東へは80km近く離れているが、火山灰は風で広範囲に飛散する。火山灰は草木灰ではなく、スコリアや火山弾の微細な鉱物で、0.1mm程度の粒子から成る。関東ローム層のさらさらとした土質は、この微細な火山灰の堆積によるもの。つまり、赤土は母岩の風化ではなく、火山灰の風化によって形成されたと言える。

 

蛇紋岩で出来た山が近くにある田んぼ

/** Geminiが自動生成した概要 **/
蛇紋岩地帯の田んぼでは、マグネシウム豊富な水が自然と供給されるため、施肥の必要がなくマグネシウム欠乏も起こらない。蛇紋岩は鉄分も含み、美味しい野菜に必要な要素を満たしている。実際に「蛇紋岩米」としてブランド化された例もあり、一見ゴツい名前だが、美味しい米が育つ好条件を示唆している。

 

スコリアという多孔質の塊

/** Geminiが自動生成した概要 **/
スコリアは、玄武岩質マグマが噴火時に発泡してできた多孔質の暗色の火山噴出物である。玄武岩は二酸化ケイ素含有量が少なく粘性が低いため、溶岩は遠くまで流れ、周辺に高い山は形成されない。噴火口付近では、噴き出たマグマが急速に冷却されスコリアや火山灰となる。関東ローム層もこの火山灰の堆積によって形成された。スコリアは風化しやすく、赤土の形成にも関わっている。実際に噴火口跡でスコリアを観察することで、赤土への理解を深めることができる。

 

はやく冷却されたことで穴ができた

/** Geminiが自動生成した概要 **/
この記事は、火山岩、特に玄武岩の風化について考察しています。著者は、硬い岩が土に変わる過程に疑問を持ち、玄武岩の表面に見られる穴に着目します。これらの穴は、マグマが冷える際に、特に地表付近で水分が蒸発し体積が減少することで形成されたと説明されています。穴の多い玄武岩は、固い岩盤に比べて風化しやすく、土壌形成に寄与すると推測しています。しかし、実際に風化して土になるには長い時間が必要であることを認め、次の記事「スコリアという多孔質の塊」への繋がりを示唆しています。

 

夜久野の玄武岩と赤い石

/** Geminiが自動生成した概要 **/
夜久野の玄武岩公園、かつての採石場を訪れ、玄武岩の風化過程を観察した。柱状節理の玄武岩地表で、木の根が侵入した箇所は茶色の赤土になっていた。さらに、局所的に鮮やかな赤い部分を発見。これは玄武岩中の鉄が風化し、土壌化している過程だと推測。茶色の土は腐植を含んでいると考えられる。超望遠レンズで撮影した画像は、これらの変化を捉えており、土壌への遷移を理解する手がかりとなった。

 

玄武岩を磨くと中は黒でした

/** Geminiが自動生成した概要 **/
夜久野高原で採取した玄武岩は、表面は赤褐色だったが、割ってみると内部は黒色だった。これは、玄武岩に含まれる鉄分が表面で酸化し、赤土と同じ原理で赤くなっていると考えられる。玄武洞博物館で入手した玄武岩の標本も同様に、風化面は赤褐色だったが、新鮮な破断面は黒色だった。これは、岩石の表面だけが酸化の影響を受けていることを示唆している。さらに、夜久野高原で採取した赤い石は、研磨すると鮮やかな赤色になった。これは、酸化鉄鉱物、おそらく赤鉄鉱の含有によるものと考えられる。これらの観察から、玄武岩の赤色は風化による酸化鉄の生成によるものであり、内部は鉄分を含むため黒色であることが確認された。

 

赤土の理解のために玄武洞へ

/** Geminiが自動生成した概要 **/
知人は「師は向こうからやってくる」と言い、準備が整うと運命的に出会いが訪れると説く。それを実感する体験をした著者は、大陸の赤い土の写真を見たことがきっかけで、土壌への興味を抱く。福井の東尋坊訪問で、赤土が玄武岩の風化したものだと知り、土壌学の知識と繋がった。そこで、玄武岩を理解するため、兵庫県の玄武洞を訪れる。玄武洞は柱状節理の玄武岩の採掘場で、その岩石は亀の甲羅に似ていることから玄武と名付けられ、後に玄武岩の由来となった。著者は、赤土色の玄武岩の表面を見て、新たな発見の予感を感じている。

 

一般的に赤土には腐植が多いと言われるけれど

/** Geminiが自動生成した概要 **/
火山岩由来の赤土と花崗岩由来の真砂土では、赤土の方が腐植が多い理由について考察している。花崗岩は風化しやすく土になりやすい一方、安山岩は風化しにくいため、土壌化に植物の根や微生物の活動がより必要となる。つまり、安山岩の風化には生物の介入が多く、結果として生物の死骸由来の腐植が蓄積しやすいため、赤土の方が腐植が多くなるという仮説を立てている。この理解が正しければ、山を切り開いた農地への取り組み方も変わると述べている。

 

安山岩の周辺の土壌は赤土でした

/** Geminiが自動生成した概要 **/
安山岩柱状節理周辺の土壌を観察したところ、赤土が見られた。水田では黒みがかっており、畑では薄い茶色だった。赤土の赤色は、鉱物中の鉄が酸化したためである。柱状の安山岩にも茶色い箇所があり、この地域の赤土は安山岩由来と考えられる。長い時間をかけて、硬い火山岩が風化し土壌になったと考えられる。侵食が激しい場所はより茶色く、植物の根から出る酸や潮風も風化を促進する。次の記事では、一般的に赤土には腐植が多いと言われることについて考察する。

 

安山岩柱状節理から何を得るか?

/** Geminiが自動生成した概要 **/
ブラタモリに触発され、地質と地域の歴史の関係に興味を持った筆者は、東尋坊と鉾島で観察した柱状節理から地質を考察している。これらの島は安山岩で形成されており、五角柱状の岩や侵食された岩が見られる。安山岩は火山岩で、流紋岩と玄武岩の中間的な性質を持つ。筆者は、安山岩が風化すると鉄分が少ない土壌になると推測し、安山岩風化土の肥沃度について、深成岩由来の真砂土よりも高い可能性を指摘し、今後の調査を示唆している。


Powered by SOY CMS  ↑トップへ