ブログ内検索

micro:bitページ
とにかく速いブログサイトを目指す

アーカイブ : 2020年10年00月

 

ドングリが熟す

/** Geminiが自動生成した概要 **/
植物の亜鉛欠乏は、老化促進やクロロフィル分解を引き起こし、深刻な生育阻害をもたらします。亜鉛は光合成に関わるタンパク質やクロロフィルの生合成に必須です。欠乏状態では、オートファジーと呼ばれる細胞内分解システムが活性化し、不要なタンパク質や損傷した葉緑体を分解することで亜鉛を回収しようとします。このオートファジーは、亜鉛欠乏への適応戦略として機能し、一時的な生存を可能にしますが、長期的な欠乏は植物の成長を著しく阻害します。したがって、植物の健全な生育には適切な亜鉛供給が不可欠です。

 

マテバシイの殻斗にある瘤らしきものは何だ?

/** Geminiが自動生成した概要 **/
マテバシイの殻斗にある瘤状のものは、受精しなかった雌花に由来する。マテバシイは一つの花序に複数の雄花と雌花が密集する。ドングリは受精した雌花の子房が成熟したもので、殻斗はそれを保護する器官。一つの花序で受精した雌花が一つだけの場合は、他の未受精の雌花の殻斗が融合し、瘤状になる。つまり、瘤はドングリにならなかった殻斗の痕跡である。ブナ科の花は独特の構造を持つため、今後の観察が楽しみである。

 

ドングリたちの休眠性

/** Geminiが自動生成した概要 **/
ドングリは種子ではなく、薄い果皮に包まれた堅果である。乾燥に弱いドングリは、発芽時期を調整する休眠性を持つ。アベマキは休眠性が弱く秋に発根し冬を越すが、クヌギは休眠性が強く春に発芽する。クヌギの休眠解除には約120日の低温処理が必要となる。これらの情報から、秋に発根しているドングリはアベマキと推測できる。ただし、春に芽生えているドングリの種類の特定は、発芽後の成長速度が不明なため難しい。

 

森の光が差し込むところのドングリたち

/** Geminiが自動生成した概要 **/
筆者は近所の雑木林で、光が差し込む場所にブナ科の幼木を発見した。周辺の落葉をどけると、丸いドングリから芽が出ており、クヌギと推測している。更に落葉をかき分けると、ドングリから根も伸びていたが、土に埋まっておらず、落葉に覆われていた。このことから、前回の記事同様、落葉がドングリの発芽に適した環境を提供していることを実感した。

 

落葉高木の下のドングリたち

/** Geminiが自動生成した概要 **/
森の端の落葉高木の下で、丸いドングリを発見。落ち葉にアベマキの特徴があったため、ドングリもアベマキと推測。落ち葉の下からは発芽しかけたドングリも見つかり、白い部分は根と判断。アベマキは陽樹であり落葉樹であるため、道路脇の明るい場所で発芽していたことは、陽樹の発芽環境の理解に役立つ。陽樹のドングリは落ち葉の上に落ちれば、土に埋もれずに発芽できることがわかった。

 

丸いドングリといってもクヌギとは限らない

/** Geminiが自動生成した概要 **/
丸いドングリはクヌギとは限らない。似たドングリをつけるアベマキが存在する。著者は図鑑で確認し、葉の縁の鋸歯が針状であることからアベマキだと判断した。クヌギの葉の鋸歯はより太い芒状。葉の裏の色も識別点で、クヌギは緑、アベマキは白。ただし、今回観察した葉の裏は緑だったため、確信には至っていない。樹皮の粗さやドングリの形状も識別指標となる。

 

神社で見かけた小さなドングリ

/** Geminiが自動生成した概要 **/
神社で小さなドングリを見つけ、特徴から木の種類を調べた。殻斗が大きく、葉は厚く光沢があり常緑樹。図鑑でシラカシに似ているが小さすぎる。殻斗の縞模様からカシ類に絞り、イチイガシを発見。アク抜きせずに食べられるドングリで、神社によく植林されるという記述も一致。救済植物の可能性も考えられる。神社の奥には弥生時代の遺跡があることも付記。最終的に、この木が本当にイチイガシかどうかは確証を得られていない。

 

この木、何の木、気になる木は続く…

/** Geminiが自動生成した概要 **/
根元にドングリが落ちている木の種類を調べた。細長い堅果と鱗状の殻斗から、コナラ、ミズナラ、マテバシイの候補に絞られた。落葉していることから常緑樹のマテバシイは除外され、葉の鋸歯と葉柄の特徴からミズナラも除外、コナラと同定された。実際、幹にはコナラの札も付いていた。コナラは昆虫が集まる木として知られるため、樹皮の特徴を覚えることにした。

 

休耕田の草たち

/** Geminiが自動生成した概要 **/
休耕田の雑草の茂り具合から、耕作放棄地でも草ぼうぼうにならないことを観察した筆者は、土壌の状態について考察している。夏草、スギナ、ロゼット系の秋冬の草が共存する様子から、かつての稲作による土壌への負担が大きかったのではないかと推測し、自然回復には時間がかかると予想する。NPK肥料のみの管理に限界を感じ、土壌改善の必要性を訴えている。関連記事では、レンゲの播種時期について触れ、持続可能な農業への関心を示唆している。

 

ウンカに食害された株とそうでない株の収穫跡

/** Geminiが自動生成した概要 **/
レンゲ米栽培の水田で、イネの初期生育の遅れがその後の生育にどう影響するかを観察した。レンゲのすき込み時期の違いにより、初期生育の遅い区画と早い区画が生じた。生育初期には、遅い区画ではイネの分けつ数が少なく、草丈も低かった。しかし、生育後期にはこの差は縮まり、最終的な収量は両区画でほぼ同等だった。これは、初期生育の遅れが、分けつの増加を抑制する一方、個々の茎の太さを増加させることで補償されたためと考えられる。つまり、初期生育の遅れは、イネの生育戦略を「量」から「質」へと変化させ、最終的な収量を確保したと言える。このことから、レンゲのすき込み時期を調整することで、イネの生育を制御できる可能性が示唆された。

 

常緑木と落葉木

/** Geminiが自動生成した概要 **/
ブナ科の樹木観察から、常緑樹と落葉樹の違いに着目した考察。常緑樹の葉も落葉するが、寿命が長い。日本の常緑樹は冬の寒さ・乾燥対策として葉を小さく厚くし、光合成効率は低い。一方、落葉樹のクヌギなどは、好条件下では薄く大きな葉で光合成を活発に行い、冬には落葉して葉の維持コストを削減する。落葉は根元に落ち葉の絨毯を作り、保水性・保温性・保肥力を高め、次年の生育を助ける。つまり、常緑樹と落葉樹は、環境への適応戦略の違いと言える。

 

この木、何の木、気になる木再び

/** Geminiが自動生成した概要 **/
シラカシは、ブナ科コナラ属の常緑高木で、関東地方以西の本州、四国、九州に分布する。樹高は15-20mに達し、樹皮は灰黒色で滑らか。葉は互生し、長さ7-12cmの倒披針形または長楕円形で、上半分に鋭い鋸歯がある。革質で光沢があり、裏面は灰白色。雌雄同株で、雄花序は黄褐色の尾状花序、雌花序は新枝の上部に直立する。堅果(ドングリ)は長さ1.5-2cmの卵状楕円形で、殻斗は環状に6-7個の横縞がある。材は堅く、建築材、器具材、薪炭材などに利用される。また、生垣や庭木としても広く植栽されている。公園樹としても一般的。

 

レンゲの播種は稲作収穫後のすぐ後

/** Geminiが自動生成した概要 **/
レンゲ米栽培では、稲刈り後のレンゲの播種時期が重要となる。10月下旬が播種限界の中、10月上旬が一般的な播種時期とされている。しかし、稲刈り後、レンゲ播種までの期間が短いため、藁の腐熟が問題となる。藁をそのまま鋤き込むとC/N比の問題が発生するため、粘土鉱物と藁を混ぜることで藁の炭素化合物の量を減らし、土壌化を促進する方法が有効と考えられる。レンゲの播種時期を考慮すると、木質有機物ではなく、粘土鉱物と藁のみの組み合わせが有効な可能性がある。

 

ヒメトビウンカの越冬からウンカの防除を考える

/** Geminiが自動生成した概要 **/
レンゲ米の品質向上には、レンゲの生育と窒素固定量の確保が鍵となる。そのため、適切な播種時期と量、リン酸肥料の施用が重要。特に、レンゲの生育初期にリン酸が不足すると、その後の生育と窒素固定に悪影響が出るため、土壌診断に基づいたリン酸施用が推奨される。また、レンゲの生育を阻害する雑草対策も必要。除草剤の使用はレンゲにも影響するため、適切な時期と種類を選ぶ必要がある。さらに、レンゲの開花時期と稲の生育時期を調整することで、レンゲ由来の窒素を効率的に稲に供給できる。収穫後のレンゲ残渣の適切な管理も重要で、すき込み時期や方法を工夫することで、土壌への窒素供給を最適化できる。これらの要素を総合的に管理することで、レンゲ米の品質向上と安定生産が可能となる。

 

高槻の原生協コミュニティルームでレンゲ米栽培の観測の報告会を行いました

/** Geminiが自動生成した概要 **/
高槻の生協コミュニティルームで、レンゲ米栽培の観測報告会が行われました。報告会は、近隣の慣行栽培田と比較できる好条件下で観測できたレンゲ米栽培の知見を共有し、来年に活かすことを目的としていました。 生育過程で何度か不安な場面があり、それらを整理・分析しました。観測は1作目ですが、温暖化による猛暑日増加で米作りが難しくなる中、レンゲ米栽培は有望な対策となる可能性が示唆されました。ただし、レンゲ米栽培は単にレンゲの種を蒔けば良いわけではなく、事前の土作りが重要で、怠ると逆効果になることにも言及されました。 報告会では、稲の生育状況、中干しの意義、猛暑日対策、レンゲ栽培時の注意点など、多岐にわたるテーマが議論されました。

 

この木、何の木、気になる木

/** Geminiが自動生成した概要 **/
ドングリの不思議に興味を持った筆者は、よく通る道のブナ科の木の特定を試みた。葉、ドングリ(堅果)、殻斗の形を手がかりに、図鑑で調べた結果、マテバシイだと推定した。細長い堅果と鱗状の殻斗で候補を絞り込み、さらに鋸歯の無い厚みのある葉の特徴からマテバシイにたどり着いた。マテバシイのドングリは二年型だが、去年の実の有無は未確認のため、来年は緑色のドングリで確認したいと考えている。

 

SOY Shopでメンテナンスページ設置プラグインを作成しました

/** Geminiが自動生成した概要 **/
SOY Shop用のメンテナンスページ設置プラグインが開発されました。このプラグインを使用すると、ショップサイトがメンテナンス中の際に簡単にメンテナンスページを表示できます。設定は、404NotFoundページと同様の方法でメンテナンスページを作成するだけで完了します。プラグインを有効化すると、管理画面のホームに設定の有無と設定画面へのリンクが表示され、メンテナンスページの表示を簡単に切り替えられます。現状は全ページがメンテナンスページに切り替わりますが、将来的にはカートやマイページのみの切り替えといった機能追加も検討されています。プラグインはsaitodev.co/soycms/soyshop/から入手可能です。

 

アザミの咲き方いろいろ

/** Geminiが自動生成した概要 **/
初夏から観察していたアザミの開花を確認し、改めて観察すると、各節に三つの蕾があり、一つずつ開花する独特なパターンを発見した。以前観察した他のアザミと比較しても、その多様性に感動し、アザミの個性に興味を持った。アザミは現在分化の最中で、地域や季節によって様々な特徴を持つため、アザミの個性を探ることで、個性の獲得について理解を深められる可能性がある。観察したアザミの種類を国立科学博物館のデータベースで調べようとしたが、サムネイルがなく特定が困難だった。

 

ドングリの不思議

/** Geminiが自動生成した概要 **/
筆者は、昆虫と植物の共進化を研究する中で、ドングリの種子散布方法に疑問を抱いた。果実によって効率的に種子を散布する植物が多い中、ドングリは毒を持ちながらも動物に食べられることを前提としている。これは、果実形成を行う植物よりも古い種である可能性を示唆する。しかし、系統図ではバラ目やウリ目といった果実形成植物と近い関係にあることが判明し、更なる疑問が生じた。ドングリの戦略には、種子を食べられることによるメリットが隠されていると考えられ、森の生態系理解において重要な鍵となるだろう。

 

SOY CMSの管理画面のHTMLファイルの探し方

/** Geminiが自動生成した概要 **/
SOY CMSの管理画面UIをカスタマイズするには、該当HTMLファイルを見つける必要があります。例としてページテンプレート編集画面(URL例: `http://example.com/cms/soycms/index.php/Page/Detail/3`)を挙げます。HTMLファイルは`cms/soycms/webapp/pages`ディレクトリ以下に配置されています。URLの`Page/Detail`部分がディレクトリとファイル名に対応します。まず`pages`ディレクトリ内の`Page`ディレクトリを探します。次に`Detail`ディレクトリを探しますが、存在しない場合は`DetailPage.html`が目的のファイルです。通常、`DetailPage.class.php`というPHPファイルも対で存在します。これらはSOY2HTMLの仕組みを利用しており、より深く理解するには関連の記事を参照ください。

 

収穫後の田のひこばえを見て、稲作の未来を考える

/** Geminiが自動生成した概要 **/
亜鉛は植物の生育に必須の微量要素であり、欠乏すると生育不良や収量低下を引き起こす。亜鉛は様々な酵素の構成要素や活性化因子として機能し、タンパク質合成、光合成、オーキシン生合成などに関与する。亜鉛欠乏下では、植物はオートファジーと呼ばれる細胞内成分の分解・再利用システムを活性化させる。これにより、古いタンパク質や損傷したオルガネラを分解し、得られたアミノ酸などの栄養素を再利用することで、生育に必要な資源を確保し、ストレス耐性を向上させている。特に、葉緑体の分解は亜鉛の再転流に重要であり、新しい葉の成長を支えている。したがって、オートファジーは亜鉛欠乏への適応戦略として重要な役割を果たしている。

 

ジャンボタニシの対策の前に生態を知ろう

/** Geminiが自動生成した概要 **/
ジャンボタニシ対策には生態の理解が重要。徳島市は椿油かすの使用を控えるよう注意喚起している。ジャンボタニシは乾燥に強く、秋にはグリセロールを蓄積して耐寒性を上げるが、-3℃でほぼ死滅する。ただし、レンゲ栽培による地温上昇で越冬する可能性も懸念される。レンゲの根の作用で地温が上がり、ジャンボタニシの越冬場所を提供してしまうかもしれない。理想は、緑肥によってジャンボタニシの越冬場所をなくすことだが、乾燥状態のジャンボタニシに椿油かすのサポニンを摂取させるタイミングが課題となる。

 

秋の夕暮れに咲き続けるアサガオ

/** Geminiが自動生成した概要 **/
10月になってもアサガオは夕方でも咲いている。夏は昼にしぼむのに、秋はなぜ夕方まで咲いているのだろうか。学研キッズネットによると、気温の低下により花びらからの水分の蒸散量が減るためだそうだ。品種によるしぼむ時間の違いは花弁の厚みが関係している。一方、ヒルガオは夏でもしぼみにくい。アサガオとヒルガオの花粉の色については別記事で触れられているが、ヒルガオの萎みにくさは、アサガオとは異なる水分蒸散抑制の仕組みがあると考えられる。

 

風よけとしてのソルゴー

/** Geminiが自動生成した概要 **/
ネギ畑で風よけ・排水性向上を目的に、ソルゴーを数畝ごとに植えている様子が観察された。ソルゴーの上部のオレンジ色は、開花期の蕊であり、カロテノイドによるものと考えられる。通常、緑肥は開花前に刈り取ることで効果が最大になるが、風よけとして利用する場合、開花による花粉の飛散で微量要素が失われる点に注意が必要だ。レンゲなど開花前提の緑肥栽培でも同様のことが言える。この養分損失への意識を持つことで、作物の秀品率向上に繋がる可能性がある。

 

ネズミがドングリを食す

/** Geminiが自動生成した概要 **/
ポリフェノールはアルミニウムと強く結合する性質を持つ。土壌中のアルミニウムは植物の生育を阻害するが、ポリフェノールがアルミニウムと結合することでその毒性を軽減する。アカネズミはドングリに含まれるポリフェノール(タンニン)を唾液と腸内細菌で無毒化し、栄養源として利用する。腸内細菌はタンナーゼという酵素を産生し、タンニンをより小さな分子である没食子酸に分解する。この分解によってタンニンの渋みが軽減される。ポリフェノールとアルミニウムの結合、そしてタンナーゼによるタンニンの分解は、土壌の形成や森林生態系において重要な役割を果たしていると考えられる。

 

SOY Shopで予防接種用の予約アプリの開発を行いました

/** Geminiが自動生成した概要 **/
SOY Shopでキャンセル多発型の事業向け予約アプリを開発。予約受付と同時にキャンセル待ち受付も開始し、キャンセル発生時には自動でキャンセル待ちの先頭者にメールで通知、24時間以内に予約確定しなければ次の待機者に通知がいく仕組み。キャンセル待ちの順番はキャンセル発生時点ではなく、キャンセル待ち登録時点の順番を維持することで公平性を確保。また、二重予約防止のため、同一人物による複数アカウント作成のチェック機能や、予約時に電話番号認証を導入。これらの対策により、キャンセル発生時の迅速な対応と、キャンセル待ちユーザーの利便性向上、不正利用の抑制を実現した。

 

刈り取った穂を天日干しすることで味は変わるのか?

/** Geminiが自動生成した概要 **/
野菜の美味しさは食感に大きく影響される。食感は、硬さ、脆さ、粘り、滑らかさなど多様な要素から構成され、それらの組み合わせが「歯ごたえ」「口当たり」「喉越し」といった全体的な印象を作り出す。細胞壁のセルロース、ヘミセルロース、ペクチンといった成分や細胞内の水分含有量、そして調理法が食感に影響を与える。例えば、加熱によりペクチンが分解されると軟化し、逆に脱水されると硬くなる。また、咀嚼音も重要な要素で、パリパリ、シャクシャクといった音が食欲や満足感を高める。野菜の種類によって最適な食感があり、それを引き出す調理法を選ぶことが美味しさにつながる。

 

観測していたレンゲ米栽培の田が無事に収穫を迎えたそうです

/** Geminiが自動生成した概要 **/
観測対象のレンゲ米水田は、ウンカの当たり年にも関わらず無農薬で収穫を達成した。驚くべきことに、近隣の殺虫剤を使用した水田ではウンカ被害が発生した。この水田は冬期にレンゲを栽培し、土壌改良材を用いて土壌を改善していた。レンゲ鋤込み後の土壌は、軽くて小さな塊の状態になっていた。一方、他のレンゲ栽培水田ではウンカ被害が多かった。このことから、ミツバチによるレンゲの花蜜と花粉の持ち出しが、ウンカ発生に影響を与えている可能性が示唆される。次作では今作の知見を活かし、秀品率向上を目指す。

 

SOY CMSでスマホでブログ投稿プラグインを作成しました

/** Geminiが自動生成した概要 **/
Core Web Vitalsは、ユーザーエクスペリエンスを測定する重要なSEO指標です。特にLargest Contentful Paint(LCP)はページの読み込み速度を、First Input Delay(FID)はインタラクティブ性、Cumulative Layout Shift(CLS)は視覚的な安定性を評価します。これらを改善することで、ユーザーの離脱率を減らし、SEOランキング向上に繋がります。画像最適化はCore Web Vitals改善の有効な手段で、Guetzliは高品質を維持しながらファイルサイズを大幅に削減できるツールです。Guetzliを用いることで、LCPの改善に大きく貢献し、結果としてWebサイトのパフォーマンス向上とSEO対策に繋がります。

 

ドングリとポリフェノールと森の動物たち

/** Geminiが自動生成した概要 **/
ドングリは、リスなどの森の動物の餌であり、食べ残しや貯蔵のために埋められたものが発芽する。しかし、ドングリには牛の中毒死を引き起こすポリフェノールが含まれている。これは、ドングリが動物に食べられるための果実ではなく、種子であり、自衛のために渋みを持つためである。リスなどの小動物は、このポリフェノールの影響を受けないよう適応していると考えられる。ドングリの運搬と種まきという点で、小動物とドングリの共進化には興味深い関係が存在する。

 

ブルーベリーは目に良いというけれど

/** Geminiが自動生成した概要 **/
ブルーベリーの視力増強効果は、アントシアニンというポリフェノールによるものです。アントシアニンはブルーベリー特有ではなく、近縁種のビルベリーや他の植物にも含まれます。視力への影響は、光による活性酸素の発生を抑えることにあります。紫外線を含む光は目に有害で、活性酸素を発生させ、視細胞を損傷・死滅させます。アントシアニンはこの活性酸素の発生を抑制し、視細胞の損傷を軽減、再生も抑えることで視力増強に繋がります。この活性酸素抑制効果は、以前の記事で触れたアジサイの花弁の色素やフラボノイドと関連しています。

 

黒米のおにぎりを食べた

/** Geminiが自動生成した概要 **/
ポリフェノールは、抗酸化作用と活性酸素除去作用を持つ。抗酸化作用は、体が酸化されるのを防ぎ、老化や生活習慣病予防に繋がる。活性酸素除去作用は、体内の活性酸素を除去し、細胞の損傷を防ぐことで、同様に老化や病気のリスクを軽減する。これらの作用は相乗的に働き、健康維持に貢献する。ブルーベリー等に含まれるアントシアニンはポリフェノールの一種で、特に強い抗酸化作用を持つ。視力改善効果も報告されており、目の周りの血流改善や網膜機能の向上に寄与すると考えられる。

 

荒れ地に生えるパイオニアのハギ

/** Geminiが自動生成した概要 **/
植物は生育環境で様々な化学物質を放出し、他の生物に影響を与えるアレロパシー現象を示す。特に揮発性物質は、種子発芽や成長阻害、あるいは促進など、多様な作用を及ぼす。例えば、ヨモギの香気成分は雑草の生育を抑制し、一方、カラシナの揮発成分はレタスの発芽を促進する。これらの物質は、植物間の競争、植生遷移、病害虫への抵抗性など、生態系において重要な役割を果たしている。揮発性物質の作用メカニズムは複雑で、濃度や環境条件、受容植物の種類によって変化する。今後の研究により、農業や園芸への応用が期待される。

 

クヌギの森で昆虫を学ぶ

/** Geminiが自動生成した概要 **/
陽樹は、明るい場所を好み、成長が速い樹木です。強い光を必要とするため、森林が破壊された後などにいち早く侵入し、パイオニアツリーとも呼ばれます。種子は小さく軽く、風散布されるものが多く、発芽率は高いですが寿命は短いです。明るい環境では陰樹よりも成長が早く、競争に勝ちますが、暗い場所では陰樹に負けてしまいます。代表的な陽樹には、アカマツ、シラカバ、クヌギなどがあり、遷移の初期段階で重要な役割を果たします。耐陰性が低い一方、成長が速く寿命が短いという特徴を持ち、森林の形成と変化に大きく関わっています。

 

刈り倒された場所のヒガンバナとクズ

/** Geminiが自動生成した概要 **/
草刈り後の場所でヒガンバナとクズが一緒に生えていた。ヒガンバナはアレロパシー作用を持つため、クズの生育を阻害するはずだが、実際にはクズらしきつる草が再生していた。これは、ヒガンバナのアレロパシーがクズの種子発芽に影響するものの、既に成長した個体の再生には効果がないためと考えられる。もしくは、ヒガンバナの個体数が少なく、アレロパシー物質の濃度が低いため、クズへの影響が限定的だった可能性もある。

 

データ構造のキューとリングバッファを見る

/** Geminiが自動生成した概要 **/
Go言語のテスト方法に関する記事の要約です。Goでは`*_test.go`ファイルにテスト関数を記述します。テスト関数は`TestXxx`という命名規則に従い、`*testing.T`を引数に取ります。`t.Error`や`t.Errorf`でテスト失敗を報告し、`t.Log`でログを出力します。`go test`コマンドでテストを実行でき、`-v`オプションで詳細表示、`-cover`でカバレッジ計測が可能です。記事では具体的なテスト例として、文字列の等価性チェックやエラーハンドリングのテストが紹介されています。また、外部パッケージのテストやテストデータの扱いについても触れられています。

 

エンサイの花が咲いている

/** Geminiが自動生成した概要 **/
エンサイはヒルガオ科の植物で、サツマイモやアサガオと似た花を咲かせる。ミャンマーでは盛んに栽培されており、水田のような場所で育つ。真夏の暑さにも強く、温暖化が進む日本の将来の主力作物となる可能性がある。茎が空洞で水に浮く特性も持つ。イネ、サツマイモと共に、エンサイは暑さに強い食料源として期待できる。ヒルガオ科植物の強靭な生命力は、過酷な環境下での食料生産に役立つだろう。


Powered by SOY CMS  ↑トップへ