ブログ内検索

プログラミング教材開発
大阪府高槻市原地区で肥料教室を開いています
 

トマトにどうやってケイ素肥料を効かせるか?

/** Geminiが自動生成した概要 **/
土壌微生物とケイ素は密接な関係を持つ。植物はケイ酸を吸収し、一部を土壌に放出する。このケイ酸は、特定の微生物によって利用される。例えば、珪藻や放散虫はケイ酸を使って殻を形成し、バクテリアの中にはケイ酸を細胞壁に取り込むものもいる。また、ケイ酸は土壌構造の改善にも寄与し、微生物の生育環境を良好にする。さらに、ケイ酸は植物の病害抵抗性を高める働きがあり、間接的に微生物の活動にも影響を与える。土壌中のケイ酸の存在は、微生物群集の構成や活動に影響を及ぼし、ひいては植物の生育にも関与する複雑な相互作用が存在する。

 

トマトとケイ素

/** Geminiが自動生成した概要 **/
ケイ素は植物に様々な効果をもたらす。レタスではマンガン毒性を緩和し、トウモロコシでは蒸散を抑制する。トマトはケイ素集積量が低いものの、全くないと奇形が生じるため微量は必要。トマト体内でのケイ素輸送機構に欠損があり、効率的に運搬できないことが原因と考えられる。ケイ素はトマトの葉内マンガンの分布均一化を通して光合成ムラをなくし生産性向上に寄与する可能性があり、蒸散にも影響すると思われる。

 

石灰過剰の土壌で鉄剤を効かすの続き

/** Geminiが自動生成した概要 **/
トマト栽培の「木をいじめる」技術は、水や肥料をギリギリまで制限し、植物にストレスを与えることで糖度や収量を高める方法である。ただし、この方法は土壌を酷使し、慢性的な鉄欠乏を引き起こすリスクが高い。短期的な収量増加は見込めるものの、土壌の劣化により長期的な視点では持続可能な栽培とは言えず、経営の破綻に繋がる可能性も示唆されている。

 

石灰過剰の土壌で鉄剤を効かす

/** Geminiが自動生成した概要 **/
ハウス栽培では、軽微な鉄欠乏が問題となる。キレート鉄を用いることで灌注でも鉄欠乏を回避できるが、マンガンの欠乏は防げない。マンガンは光合成に必須の要素であるため、欠乏を防ぐ必要がある。キレートマンガンも存在するが、土壌環境を整えることが重要となる。具体的には、クエン酸散布による定期的な除塩が有効だ。クエン酸は土壌中の塩類を除去する効果があるが、酸であるため土壌劣化につながる可能性もあるため、客土も必要となる。これらの対策はトマトやイチゴだけでなく、ハウス栽培するすべての作物に当てはまる。葉色が濃くなることは、窒素過多や微量要素欠乏を示唆し、光合成効率の低下や収量減少につながるため注意が必要である。

 

施設栽培で軽微な鉄欠乏の症状を見逃すな

/** Geminiが自動生成した概要 **/
施設栽培では、トマトなどの作物は鉄欠乏に陥りやすい。土壌中に鉄は豊富に存在するものの、土壌の酷使による鉄の絶対量の減少と、土壌の化学性の変化が原因となる。施設内では降雨がないため、土壌pHが低下しにくく、石灰やリン酸が過剰になりやすい。鉄の吸収は低いpHで促進されるが、高いpHでは阻害される。植物は根から有機酸を分泌して土壌pHを下げようとするが、施設栽培では発根量も少なく、この作用も限定的となる。結果として、鉄欠乏が生じやすく、光合成に不可欠な鉄の不足は、軽微であっても大きな影響を与える。さらに、アルミニウム過剰な酸性土壌では、アルミニウム耐性植物は鉄吸収メカニズムを利用してアルミニウムを無毒化するため、鉄欠乏を助長する可能性もある。

 

水耕栽培でマイクロバブルの利用は有効か?

/** Geminiが自動生成した概要 **/
マイクロ・ナノバブルは農業分野での応用が期待される技術である。ナノバブルはマイクロバブルよりもさらに小さく、水中での滞留時間が長い。これは溶存酸素量を高め、植物の生育促進や病害抑制に効果があるとされる。具体的には、根への酸素供給向上による収量増加、発芽・育苗の促進、洗浄効果による農薬使用量削減などが期待される。ただし、効果的なバブルサイズや濃度、生成方法などは作物や用途によって異なり、最適な条件を見つける必要がある。また、導入コストやメンテナンスも考慮すべき点である。

 

光ストレス軽減の為の紫外線照射は有効か?

/** Geminiが自動生成した概要 **/
強い光は活性酸素を発生させ、光ストレスの原因となる。光ストレス軽減にはフラボノイドなどの紫外線フィルターが有効だが、フラボノイドは紫外線以外の光も遮断する可能性がある。また、植物の生育に必要な光も遮断してしまう可能性があるため、人工的に特定の波長の光、例えば緑色光や紫外線を照射する手法も考えられる。トマト栽培では、雨による果実のひび割れを防ぐため遮光を行うが、これがフラボノイド合成を阻害し、光ストレスを受けやすくしている可能性がある。つまり、光合成効率を維持しつつ光ストレスを軽減するには、遮光する光の波長を調整する必要がある。

 

光ストレス緩和の為のフラボノイド

/** Geminiが自動生成した概要 **/
植物は、病害虫や紫外線など様々なストレスから身を守るため、様々な防御機構を備えている。その中でも重要な役割を果たすのが、芳香族アミノ酸であるフェニルアラニンやチロシンから合成される二次代謝産物だ。これらは、リグニン、サリチル酸、フラボノイドといった物質の原料となる。リグニンは細胞壁を強化し、病原菌の侵入を防ぐ。サリチル酸は、病原菌に対する抵抗性を高めるシグナル物質として働く。フラボノイドは、紫外線吸収剤や抗酸化物質として機能し、光ストレスや酸化ストレスから植物を守る。つまり、芳香族アミノ酸は植物の防御システムの基盤を担っており、健全な生育に不可欠な要素と言える。

 

アブシジン酸は根以外でも合成されているか?

/** Geminiが自動生成した概要 **/
植物の気孔開閉は、根で合成されるアブシジン酸だけでなく、葉でも合成されることがわかった。葉でのアブシジン酸合成は、光ストレスによる活性酸素の発生を抑えるためと考えられる。合成経路は、カロテノイドの一種であるゼアキサンチンから数段階の酵素反応を経て行われる。このゼアキサンチンは、過剰な光エネルギーの吸収を防ぐキサントフィルサイクルにも関わっている。乾燥していない環境下でも、過剰な日光によって葉でアブシジン酸が合成され気孔が閉じると、光合成の効率が低下し生産性のロスにつながる可能性がある。

 

Micro:bitで二種類のサーボモータの動作を比較してみる

/** Geminiが自動生成した概要 **/
この記事では、Micro:bitを用いて二種類のサーボモーター(360°回転と270°回転)の動作比較を行っています。どちらもGeekservo 9gサーボですが、360°サーボは角度指定で回転速度が変化し、90°を基準にそれより大きい値で反時計回り、小さい値で時計回りに回転します。一方、270°サーボは指定角度で正確に停止します。同じコードでもサーボの仕様によって動作が異なることを実証し、LEGO Ninjagoのコールのミニフィグを使って動作の様子を動画で紹介しています。

 

施設栽培におけるECの管理について

/** Geminiが自動生成した概要 **/
猛暑日が多いと、中干しによる土壌の乾燥が植物に過度のストレスを与える可能性が高まります。中干しの目的は過湿を防ぎ根の活力を高めることですが、猛暑下では土壌温度が急上昇し、乾燥した土壌はさらに高温になり、根のダメージにつながります。結果として、植物の生育が阻害され、収量が減少する可能性も。中干しを行う場合は、猛暑日を避け、土壌水分計などを活用して土壌の状態を適切に管理することが重要です。また、マルチや敷き藁などを利用して土壌温度の上昇を抑制する対策も有効です。

 

SOY Shopで注文検索の条件の自動入力で教育コストと人的ミスを減らす

/** Geminiが自動生成した概要 **/
SOY Shopの注文検索に、配送条件を自動入力するボタンを追加することで、配送漏れなどの人的ミスを削減する拡張機能を開発しました。従来、複数の検索条件を手動入力する必要があり、ミスが発生しやすい状況でした。この拡張機能により、ボタン一つで必要な条件が自動入力されるため、操作手順が簡略化され、教育コストと人的ミスが大幅に削減されます。繁忙期のアルバイト教育も効率化され、クレーム対応の減少も見込めます。この機能は標準搭載ではなく、個別の相談に応じて実装します。

 

人手が足りないところは何処か?

/** Geminiが自動生成した概要 **/
農業における真の人手不足は、収穫作業ではなく、栽培管理、特に土壌管理にある。緑肥栽培のような予防策を怠り、結果的に病気蔓延による損失を招く事例は、人員配置とリスク評価の不足を露呈する。収穫要員は確保しやすいが、緑肥栽培のような高度な技術を要する作業を担う人材こそが不足している。つまり、農業の衰退は収穫労働力不足ではなく、土壌管理を含む栽培管理の人材不足が原因であり、堆肥や緑肥栽培の支援が解決策となる。

 

土壌中に青枯病菌を捕食する生物はいるのか?

/** Geminiが自動生成した概要 **/
トマトの青枯病対策として土壌消毒は効果が薄く、土壌中の原生生物に着目する必要がある。原生生物は細菌を捕食し、その際に植物ホルモンが増加して発根が促進される。青枯病菌は深さ40cmに潜伏するため、緑肥栽培で深く根を張らせることが有効である。緑肥栽培時は発根促進が重要なので、土壌改良材は緑肥に施肥する。根が土壌を耕し、形成する役割も重要。

 

トマト栽培の最大の課題の青枯病についてを見る

/** Geminiが自動生成した概要 **/
土壌病害、特に青枯病はトマト土耕栽培における深刻な問題であり、水耕栽培への移行の大きな要因となっている。青枯病菌は土壌消毒の有効範囲より深い層に潜伏するため、消毒は初期生育には効果があるように見えても、長期栽培のトマトでは後期に根が伸長し感染してしまう。結果として消毒コストと人件費の損失に加え、土壌劣化を招く。感染株の除去も、土壌中の菌を根絶しない限り効果がない。解決策として、果樹園で行われる土壌物理性の改善、特に根への酸素供給に着目した土作りが有効と考えられる。緑肥活用なども土壌改良に繋がる可能性がある。根本的な解決には、土壌環境の改善と病害への抵抗力を高める土作りが不可欠である。

 

高温ストレスと気孔の開閉についてを考える

/** Geminiが自動生成した概要 **/
高温ストレス下では、植物は葉のイオン濃度を高めることで根からの吸水力を高め、蒸散による葉温低下と光合成促進を図る。この生理現象は土壌水分の枯渇を早める一方、降雨後の急速な吸水と成長を促す。つまり、高温ストレスと降雨の繰り返しは植物の成長に良い影響を与える可能性がある。このメカニズムの理解は、例えば稲作における中干しの最適な時期の判断に役立つと考えられる。

 

SOY Shopでアクセス制限プラグインを作成しました

/** Geminiが自動生成した概要 **/
SOY Shopのアクセス制限プラグインが開発され、標準機能として同梱されました。このプラグインは、特定のブラウザからのみアクセス可能なページを作成し、IPアドレスと紐づけた固有の鍵をクッキーで管理することで実現しています。管理画面でブラウザを登録すると鍵が生成され、クッキーに保存。SOY Shop側は鍵とIPアドレスをデータベースに格納し、有効期限を設定します。これにより、鍵の偽装や不正アクセスを防ぎ、セキュリティを高めています。このプラグインは、タブレット等で特定機能を利用する際の利便性向上に役立ちます。最新版はsaitodev.co/soycms/soyshop/からダウンロード可能です。

 

トマト果実の割れを回避するために気孔の開閉と光合成を考える

/** Geminiが自動生成した概要 **/
トマト果実の割れを防ぐには、気孔の開閉による水分コントロールが重要。気孔は光合成に必要なCO2を取り込み、同時に蒸散で水分を失う。光合成が活発な時は糖濃度が上がり、浸透圧で根から水を吸い上げる。しかし、乾燥した日は蒸散量が増え、土壌水分が枯渇しやすいため、植物ホルモンが分泌され気孔が閉じる。葉の湿度は蒸散量に影響するため、光合成には受光量と湿度が関係する。トマトの秀品率向上には、スプリンクラーによる霧状噴霧で葉周辺の湿度を適切に保つことが重要となる。

 

トマト果実の割れを回避するために気孔の開閉を考える

/** Geminiが自動生成した概要 **/
トマト果実の割れ防止対策として、葉の気孔に着目。気孔はCO2吸収と蒸散のバランスを保つため開閉し、孔辺細胞のカリウムイオン濃度変化と膨圧が関与する。日中はCO2獲得と水損失のバランス調整が重要。気孔開閉機構の詳細は不明だが、カリウムイオンが孔辺細胞に出入りすることで水の移動が起こり、気孔が開閉する。トマト栽培ではカリウム不足が懸念され、これが気孔開閉に影響し、微量要素吸収阻害など品質低下につながる可能性が考えられる。

 

トマト果実の割れを回避するために葉のシンク強度を考える

/** Geminiが自動生成した概要 **/
トマト果実の割れは、果皮の柔らかさと急激な吸水により発生する。吸水抑制のため、葉のシンク強度を高めることが有効である。葉のイオン濃度を高めることで、浸透圧の原理により果実への水の移動を抑制できる。微量要素の葉面散布は、葉内イオン濃度を高め、光合成を促進することで糖濃度も高めるため効果的。シンク強度はサイトカイニンが関与し、根で合成されるため、発根量の確保も重要となる。

 

トマトの果実のヒビ割れ問題に触れてみる

/** Geminiが自動生成した概要 **/
師管は光合成産物などの有機物を植物体全体に輸送する組織である。圧流説は、師管内の物質輸送メカニズムを説明する有力な仮説である。ソース細胞(葉肉細胞など)で光合成産物が合成されると、スクロースが能動輸送により師管の伴細胞に取り込まれる。これにより師管の浸透圧が上昇し、水が周囲から師管内に流入する。その結果、師管内は高い圧力状態となる。一方、シンク細胞(根や果実など)では、スクロースが師管から取り出され利用される。これによりシンク細胞側の師管の浸透圧は低下し、水が師管外へ流出する。結果として、ソース細胞側からシンク細胞側へと圧力勾配が生じ、溶液が師管内を流れる。これが圧流説のメカニズムである。

 

トマト栽培で木をいじめるという技術を整理する

/** Geminiが自動生成した概要 **/
トマトの老化苗定植は微量要素欠乏のリスクを高める。老化苗は根の活性が低く、土壌からの微量要素吸収が不十分になりやすい。特に亜鉛欠乏は深刻で、葉の黄化や生育不良を引き起こす。さらに、亜鉛は植物ホルモンのオーキシン生成に関与し、不足すると花や果実の形成にも悪影響が出る。結果として、収量低下や品質劣化につながるため、老化苗定植時には微量要素、特に亜鉛の適切な補充が必須となる。葉面散布は即効性が高く効果的である。

 

トマト栽培の栄養成長と生殖成長を意識する

/** Geminiが自動生成した概要 **/
トマト栽培は、果実収穫、水分量による品質変化、木本植物を草本として扱う点、木の暴れやすさから難しい。ナスは「木の暴れ」が少ないため、物理性改善で秀品率が向上しやすい。トマトは木本植物だが、一年で収穫するため栄養成長と生殖成長のバランスが重要となる。窒素過多は栄養成長を促進し、花落ち等の「木の暴れ」を引き起こす。これは根の発根抑制とサイトカイニン増加が原因と考えられる。サイトカイニンを意識することで、物理性改善と収量増加を両立できる可能性がある。トマトは本来多年生植物であるため、一年収穫の栽培方法は極めて特殊と言える。

 

Micro:bitでサーボモータの止め方を試す

/** Geminiが自動生成した概要 **/
Micro:bitでサーボモーターを制御し、停止させる方法を検証した。ブレットボードと拡張ボードを用い、LEGO人形を乗せて回転を確認。以前の記事でサーボモーターの基準値を90度としたため、Aボタン押下で150度まで回転後、1秒で停止するコードを作成・実行した。結果は1秒後にモーターは停止したが、150度以上に回転していた。サーボモーターへの入力値と実際の回転角度の対応はまだ不明瞭。

 

トマト栽培の土作り事情

/** Geminiが自動生成した概要 **/
トマト土耕栽培では、木の暴れを抑えるため土壌の物理性改善を怠る傾向がある。しかし、これは土壌EC上昇、塩類集積、青枯病菌繁殖を招き、立ち枯れリスクを高める。土壌消毒は一時しのぎで、土壌劣化を悪化させる。物理性悪化は鉱物からの養分吸収阻害、水切れによる川からの養分流入減少につながり、窒素過多、微量要素不足を引き起こす。結果、発根不良、木の暴れ、更なる土壌環境悪化という負のスパイラルに陥り、土壌消毒依存、高温ストレス耐性低下を招く。この悪循環が水耕・施設栽培への移行を促した一因と言える。SDGsの観点からも、土壌物理性を改善しつつ高品質トマト生産を実現する技術開発が急務であり、亜鉛の重要性も高まっている。

 

環境制御を学ぶ為にMicro:bitでサーボモータを学ぶ

/** Geminiが自動生成した概要 **/
Micro:bitとサーボモーターを用いて環境制御学習の第一歩を踏み出した著者は、サーボモーターの動作原理を学ぶため、LEGOブロックとミニフィグを使った回転実験を行った。MakeCodeで作成したコードでMicro:bitからサーボモーターに角度指令を送ると、90度を基準に、大きい値では反時計回り、小さい値では時計回りに回転する。しかし、指定角度で停止せず、一回転し続けるという問題に直面。これは、指令値が目標角度ではなく、一定時間内の回転角度を表すためであった。 著者は、サーボモーターの停止方法について疑問を抱いている。

 

トマト栽培で老化苗を定植したら微量要素の課題が付き纏う

/** Geminiが自動生成した概要 **/
トマト栽培では、秀品率向上のため土壌環境の徹底管理が必要だが、トマトとサツマイモで生産性悪化が見られた。トマトは樹勢が暴れ、サツマイモは根の肥大が不十分だった。トマト栽培では、老化苗の定植が一般的だが、これが後期の栽培難易度を高めている可能性がある。老化苗は根の先端が少ないため、窒素は吸収しやすい一方、カリウム、マグネシウム、微量要素の吸収は困難になる。結果として、花落ちの原因とされる亜鉛欠乏への施肥での対応は難しく、葉面散布が有効な手段となる。高額な環境制御に頼りすぎないためにも、微量要素の葉面散布剤の活用が重要となる。


Powered by SOY CMS  ↑トップへ