
/** Geminiが自動生成した概要 **/
水田では、イネの根圏(還元層)にメタン酸化菌が生息し、メタンを消費している可能性があります。イネの根量を増やすことで、根圏でのメタン消費量が増加し、大気へのメタン放出量が減少する可能性があります。
初期生育時に発根を促進する土作り(タンニンなどの有機物の定着)を行うことで、酸化層の厚みが増加し、イネの根の発根が促進されます。これにより、メタン消費量が上昇し、メタンの放出量をさらに抑えることができます。
/** Geminiが自動生成した概要 **/
水田では、イネの根圏(還元層)にメタン酸化菌が生息し、メタンを消費している可能性があります。イネの根量を増やすことで、根圏でのメタン消費量が増加し、大気へのメタン放出量が減少する可能性があります。
初期生育時に発根を促進する土作り(タンニンなどの有機物の定着)を行うことで、酸化層の厚みが増加し、イネの根の発根が促進されます。これにより、メタン消費量が上昇し、メタンの放出量をさらに抑えることができます。
/** Geminiが自動生成した概要 **/
水田では、酸化層でメタン酸化菌がほとんどのメタンを二酸化炭素と水に変換する。しかし、90%以上のメタンは大気中に放出されず、イネの根からの通気組織を通って排出される。
また、メタンがイネの根に取り込まれると発根が抑制される可能性があり、これを回避するために中干しを行うという説がある。
/** Geminiが自動生成した概要 **/
恐竜が生きた時代、大気中の酸素濃度は低く、植物の分解が不十分で石炭が大量に生成された。石炭は炭素を地中に閉じ込め、酸素濃度の上昇を抑えた。低酸素環境は巨大な恐竜の呼吸を困難にした可能性がある。大型恐竜は効率的な呼吸器系や、低酸素への適応を進化させた可能性が示唆されている。石炭紀後期からペルム紀にかけて酸素濃度が上昇し、恐竜の巨大化を促した可能性もある。酸素濃度と恐竜の進化には関連があると考えられる。