ブログ内検索

プログラミング教材開発
大阪府高槻市原地区で肥料教室を開いています
検索キーワード:「形質転換」
 

ゴールデンライスにはどんな遺伝子を導入したのだろう?

/** Geminiが自動生成した概要 **/
ゴールデンライスは、胚乳にβカロテンを蓄積するように遺伝子組み換えされたコメです。βカロテン合成経路のうち、コメに欠けていた「GGPPからフィトエン」と「フィトエンからリコペン」の2つの遺伝子を導入することで実現されました。フィトエン合成遺伝子はトウモロコシ、リコペン合成遺伝子はバクテリア由来です。この遺伝子導入により、コメは再びβカロテンを生成できるようになりました。ゴールデンライスは長年の開発期間を経て、フィリピンで商業栽培が開始されています。

 

カリフラワーモザイクウィルスの35Sプロモータ

/** Geminiが自動生成した概要 **/
本ブログ記事は、植物の遺伝子機能解析におけるアプローチを解説しています。特に、特定の遺伝子の働きを理解するため、「遺伝子の働きを抑える」方法(RNAiなど)に加え、「遺伝子を過剰に発現させる」手法に焦点を当てています。 この「遺伝子過剰発現」を効率的に実現する鍵となるのが、カリフラワーモザイクウィルス(CaMV)由来の「35Sプロモータ」です。任意の遺伝子の前にこのプロモータを付与して組み込むことで、その遺伝子の発現量を劇的に増加させることが可能になります。 記事は、ウイルスが持つ有用な特性が、遺伝子研究において重要なツールとして活用されている実例を、専門的に、しかし分かりやすく解説しています。

 

組み込んだ遺伝子を確実に発現させるには

/** Geminiが自動生成した概要 **/
遺伝子組み換えで、組み込んだ遺伝子が必ず発現するとは限らない。発現は転写因子という領域によって制御されている。確実に発現させるには、遺伝子と共に強制的に発現させる配列を組み込む。例えば、ウイルス由来の制御配列を使う。これは、ウイルスが宿主細胞内で自身の遺伝子を強制的に発現させる仕組みを利用したもの。具体的には、目的の遺伝子とウイルス由来の制御配列をプラスミドに挿入し、細胞に導入する。この手法は、遺伝子組み換え作物でよく使われており、異なる生物の遺伝子を組み合わせるという理解につながるが、制御配列も遺伝子の一部である。

 

遺伝子組み換えの手法の使いどころ

/** Geminiが自動生成した概要 **/
遺伝子組み換えは、特定の遺伝子の機能を調べる研究手法として利用される。例えば、青いアサガオの鮮やかな青色色素に関わる遺伝子を特定し、その遺伝子を薄い青色のアサガオに導入することで、遺伝子の機能を検証する。導入後、花色が鮮やかになれば、その遺伝子が青色色素合成に関与していることが証明される。しかし、遺伝子組み換え作物において、導入された遺伝子が植物にとって有益に働くことは稀である。遺伝子が活用される保証はなく、F1種子における課題も存在する。つまり、遺伝子組み換えは研究ツールとしては有効だが、作物改良においては、導入遺伝子の効果が限定的である可能性が高い。

おすすめの検索キーワード
おすすめの記事

Powered by SOY CMS   ↑トップへ