ブログ内検索

micro:bitページ
とにかく速いブログサイトを目指す
検索キーワード:「Python」
 

最高の開発環境を求めて2024

/** Geminiが自動生成した概要 **/
ChromebookとRaspberry Pi 5の組み合わせが最高の開発環境。ChromebookのLinux開発環境(Crostini)の制限をRaspberry Pi 5をサーバーにすることで回避。複数人でRaspberry Pi 5にアクセスし、Micro Editorを使って開発することで、小中学生でも容易にコーディングが可能に。ChromebookのSSH機能強化も貢献。Raspberry Pi 5のストレージはNVMeに換装することで信頼性向上。以前のRaspberry Pi 4B単体での開発環境に比べ、高速でストレスフリー。Chromebookはターミナルとして使用し、開発環境はRaspberry Pi 5に集約することで、ChromebookのPowerwashの影響も回避。

 

マイクロビットのワークショップとこれからの開発

/** Geminiが自動生成した概要 **/
この記事では、筆者が小学生向けのプログラミングワークショップで息子に職業体験の機会を与えた経験と、今後の農業IoT開発への展望について語っています。 ワークショップでは、マイクロビットとスクラッチを用い、息子は教材の準備や参加者のサポートなどを行いました。この経験を通して、子供向けの高度な職業体験の場を提供できる可能性を感じたようです。 また、農業IoTについては、人手不足解消だけでなく、土壌環境改善による作業量の削減こそが重要だと指摘。効率的な肥料の使用など、化学の知識を取り入れた開発が求められると訴えています。 筆者は今後もマイクロビットを用いたプログラミング教育と、農業における化学の知識の探求を続け、農業IoTの発展に貢献したいと考えています。

 

キーボード一体型のRaspberry Pi 400を購入した

/** Geminiが自動生成した概要 **/
子供がRaspberry Pi 4B 8GBでマインクラフトをプレイするため、発熱と火傷が心配で購入に至った。ケースに入れているものの電子工作がしにくいという欠点もあった。マイクラを通してプログラミングに興味を持ち、Pythonでコードを書きながらプレイするようになった。Raspberry Pi 400の発熱がどれ程なのか検証したい。

 

ChromebookのCrostiniでMicro:bitのフラッシングをしてみた

/** Geminiが自動生成した概要 **/
ChromebookのCrostiniでMicro:bitのフラッシングを行う際、Crostiniは仮想環境のためUSBを直接認識できない。そこで、Crostini上のMicro:bitの認識先である`/mnt/chromeos/removable/MICROBIT/`を`uflash`コマンドのターゲットとして指定することでフラッシングが可能になる。

 

golangのunsafeパッケージで配列の操作をしてみる

/** Geminiが自動生成した概要 **/
## プログラミング教育で注目すべきはARM + Debian + Pythonであるはずだ **要約** 近年、プログラミング教育の重要性が高まる一方で、環境構築の難しさや高額な機材が課題となっています。そこで注目すべきは、安価で入手しやすい「Raspberry Pi」を教材として活用することです。 Raspberry PiはARMアーキテクチャを採用した小型コンピュータで、DebianベースのOSが動作します。Pythonは初学者にも扱いやすい言語として人気があり、Raspberry Piとの相性も抜群です。 Raspberry PiとPythonを組み合わせることで、電子工作やIoTなど、実用的で興味深い教材を開発できます。さらに、Linuxやオープンソースの文化に触れることで、生徒の技術的な興味関心をさらに広げることが期待できます。

 

メインの開発機をRaspberry Pi 4Bにしてみる

/** Geminiが自動生成した概要 **/
## プログラミング教育におけるARM+Debian+Pythonの可能性(要約) 記事は、高性能化・低価格化したRaspberry Piに代表されるARMデバイスが、プログラミング教育に最適であると主張しています。 その理由は以下の3点です。 1. **安価で入手しやすい:** Raspberry Piは数千円で入手でき、故障時のリスクも低い。 2. **DebianベースのOS:** 安定性・信頼性が高く、豊富なソフトウェアが利用可能。 3. **Pythonの標準搭載:** 初心者に優しく、実用的なプログラミング言語として人気が高い。 これらの要素により、ARMデバイスは教育現場におけるプログラミング学習のハードルを下げ、生徒の学習意欲向上に貢献できると結論付けています。

 

AppImage形式のMinecraft: Pi Edition: Rebornでスキンを変更してみた

/** Geminiが自動生成した概要 **/
この記事は、AppImage形式になったMinecraft: Pi Edition: Rebornでスキンを変更する方法を解説しています。 まず、AppImageファイルを実行する準備として、`chmod`コマンドで実行権限を与え、`fuse`パッケージをインストールします。 スキンの変更は、`~/.minecraft-pi/overrides/images/mob/`ディレクトリに`char.png`という名前でスキンファイルを配置します。 ただし、このままだとスキンが崩れてしまうため、`minecraft_skin_fixer.py`というスクリプトを使って修正します。 最後に、AppImageファイルを`/usr/local/bin`に移動して`mcpi`というコマンド名で実行できるように設定しています。

 

Minecraft: Pi Edition: Rebornでmcpiライブラリを試す

/** Geminiが自動生成した概要 **/
記事では、プログラミング教育に最適な環境として、ARMアーキテクチャ、Debian系OS、Pythonの組み合わせを提唱しています。低価格なRaspberry Piを例に挙げ、その手軽さ、豊富なライブラリ、活発なコミュニティが教育現場にもたらすメリットを解説しています。従来の教育用PCよりも安価で汎用性が高く、電子工作などにも応用できる点が魅力的だと結論付けています。

 

Minecraft: Pi Edition: Rebornでスキンを変更してみた

/** Geminiが自動生成した概要 **/
この記事は、Minecraft: Pi Edition: Rebornでスキンを変更する方法を解説しています。 まず、好みのスキンをダウンロードします。次に、標準のスキンのPNGファイル(char.png)をバックアップし、ダウンロードしたスキンで置き換えます。この際、ファイルパスに注意が必要です。 スキンを変更後、デザイン崩れが発生する場合は、Pythonスクリプト(minecraft_skin_fixer.py)を使用して修正します。スクリプト内のファイルパスを自身の環境に合わせて変更する必要があります。 修正後、Minecraft: Pi Edition: Rebornを再起動すると、スキンが変更されているはずです。

 

プログラミング教育用のノートパソコンを探せ

/** Geminiが自動生成した概要 **/
Minecraft: Pi Editionを教材にプログラミング教育をしたいが、Raspberry Piは持ち運びに不便なため、代わりのノートパソコンを探している。Ubuntuが動作する中古PCでは性能不足が懸念される。そこで注目しているのが、QualcommのSnapdragonを搭載したSamsungの格安ノートPC「Galaxy Book Go」だ。ARMアーキテクチャを採用し、Ubuntuも動作する可能性があり、Raspberry Piの自由度とChromebookの価格帯の中間をいくマシンとして期待できる。

 

Minecraft: Pi Edition: Reborn on Ubuntu

/** Geminiが自動生成した概要 **/
記事では、子供向け科学雑誌に掲載された「Minecraft: Pi Edition: Reborn」(マイクラリボーン)を、Raspberry Piだけでなく、普段使いのUbuntuパソコンでも動作させた体験談を紹介しています。 記事では、マイクラリボーンがUbuntu 20.04以降で動作すること、amd64、arm64、armhfのdebファイルが配布されていることから、Intel Core i5搭載のUbuntuパソコンにインストールして動作確認を行ったことが記載されています。 その結果、Raspberry Pi版と同様に動作し、ローカルネットワーク経由で一緒に遊ぶこともできたと報告しています。 そして、この経験から、教育用パソコンにおけるARM、Debian、Pythonの重要性について、次回以降の記事で考察していくことを示唆しています。

 

アブラムシが排出する甘露にネオニコチノイド

/** Geminiが自動生成した概要 **/
とあるマメのアレロケミカルの話は、インゲンマメが害虫から身を守るために、様々な化学物質を使って複雑な戦略をとっていることを解説しています。 まず、ハダニに襲われると、インゲンマメは葉から香りを出し、ハダニの天敵であるカブリダニを呼び寄せます。さらに、この香りは周りのインゲンマメにも伝わり、防御を促します。 しかし、この香りは別の害虫であるナミハダニには効果がなく、むしろ誘引してしまうという欠点があります。 このように、インゲンマメは生き残るため、多様な化学物質を駆使して複雑な戦いを繰り広げているのです。

 

BBC Micro:bitのプルダウン抵抗1

/** Geminiが自動生成した概要 **/
記事では、マイクロビットを使ってプルダウン抵抗の仕組みを解説しています。 まず、タクトスイッチと10kΩの抵抗を用いてプルダウン回路を構成し、ボタンを押すとマイクロビットのディスプレイのアイコンが変わるプログラムを作成しています。 記事では、プルダウン抵抗の詳細は後述するとして、動作するコードを示しています。 具体的には、マイクロビットのGPIO 0ピンに接続されたタクトスイッチが押されると、ディスプレイのアイコンが悲しい顔から笑顔に変化し、2秒後に再び悲しい顔に戻るというものです。 記事は、この動作例を通じて、プルダウン抵抗の役割について詳しく解説していくことを予告しています。

 

ショートは危険2

/** Geminiが自動生成した概要 **/
この記事では、電子回路におけるショート(短絡)について解説しています。抵抗が並列に接続された回路において、片方の抵抗値が0Ωになると、電流は抵抗の低い経路に集中して流れます。 これは電流が流れやすい道を選ぶという性質によるものです。結果として、抵抗がない部分に電流が集中し、ショートした状態と同じになります。 このように、抵抗値が極端に低い箇所があるとショートが発生し、回路の故障や発熱などの問題を引き起こす可能性があります。

 

BBC Micro:bitでDCモータを動かしたい

/** Geminiが自動生成した概要 **/
BBC Micro:bitのGPIOピンを使ってDCモータを動かそうとしたが、3Vピンでは動作するのに、GPIOピンでは動作しないという問題が発生しています。 原因を探るため、GPIOピンの仕様を調べてみたところ、「タッチセンス機能のため、端子0, 1, 2には弱いプルアップ抵抗(10MΩ)が接続されている」という記述を見つけました。 このプルアップ抵抗がDCモータの動作に影響を与えている可能性があり、今後の検証が必要です。

 

BBC Micro:bitとトランジスタ

/** Geminiが自動生成した概要 **/
BBC Micro:bitのGPIOピンを使ってDCモーターを動かそうとしたが、電圧不足のため動かなかった。そこでトランジスタを使って電圧を上げることを試みた。書籍を参考に青色LEDをトランジスタで点灯させる回路を組んだところ、LEDは点灯したものの、DCモーターは動作しなかった。トランジスタについて更に学習する必要があると考えられる。

 

ChromebookでScratchとBBC Micro:bitを接続してみる

/** Geminiが自動生成した概要 **/
この記事は、ChromebookのScratchでBBC Micro:bitを動かす方法を解説しています。 まず、Google PlayからScratchをインストールし、Scratch用マイクロビットのHEXファイルをダウンロードしてマイクロビットに転送します。 次に、Scratchの拡張機能でmicro:bitを選択し、接続を確立します。 記事では、接続確認のため、マイクロビットのAボタンを押すと音が鳴るプログラムを作成・実行しています。 最後に、小学一年生には漢字が読めないため、ひらがなモードのScratchが必要だと述べています。

 

改めてSPIについてを知る5

/** Geminiが自動生成した概要 **/
SPI通信のモードは、クロック極性(CPOL)とクロック位相(CPHA)の組み合わせで決まります。CPOLはクロックのアイドル状態(0か1)を、CPHAはデータ取得がクロックの立ち上がり edge か、立ち下がり edge かを示します。組み合わせは4種類あり、モード0(CPOL=0, CPHA=0)からモード3(CPOL=1, CPHA=1)まで存在します。

 

ビット演算を介してシリアル通信を見る

/** Geminiが自動生成した概要 **/
この記事では、ビット演算をPythonコードを用いて解説し、シリアル通信の一つであるUARTのデータ構造を擬似的に再現しています。 まず、スタートビット、データビット、パリティビット、ストップビットから成るUARTのビット列を、ビットシフト演算子を用いて生成する過程を示します。 次に、乱数を用いてデータビットの0/1をランダムに設定することで、より現実的なUART通信を模倣しています。 これにより、ビット演算がハードウェアレベルでのデータ通信を理解する上で重要であることを示し、今後のSPI通信学習への足掛かりとします。

 

Pythonでビット演算子のビットシフトに触れる

/** Geminiが自動生成した概要 **/
Pythonのビットシフト演算子について解説しています。 **<< (左シフト)** はビットを左に移動させ、右側に0を追加します。1を左に1ビットシフトすると2、2ビットシフトすると4になります。 **>> (右シフト)** はビットを右に移動させ、末尾のビットは削除されます。4を右に1ビットシフトすると2、2ビットシフトすると1になります。 これらの演算子は、効率的な計算やデータ処理に役立ちます。具体的な使用例は次回の記事で解説されます。

 

Pythonでビット演算子のビット否定に触れる

/** Geminiが自動生成した概要 **/
Pythonではビット否定演算子~を使うと、整数のビット反転ではなく、**負数の表現**として用いられます。 記事中の例では、13 (~0b1101) のビット否定は、-14 (-0b1110) となります。これはPythonが整数を**符号付き2進数**で表現しているためです。符号付き2進数では、最上位ビットが符号を表し、残りのビットが数値を表します。 ビット反転を行うには、ビット演算とマスクを組み合わせる必要があります。単にビット反転を行うだけであれば、`~` 演算子ではなく、各ビットを反転する関数を定義する方が分かりやすいかもしれません。

 

Pythonでビット演算子の排他的論理和に触れる

/** Geminiが自動生成した概要 **/
Pythonのビット演算子の一つである排他的論理和(XOR)について解説しています。XORは、^ 演算子で表され、2つのオペランドのビットが異なる場合に1を返す演算です。 記事では、真理値表を用いてXORの動作を具体的に説明し、13と10のXOR演算を例に、ビット演算の結果が7(0b111)になることを示しています。さらに、ビットごとのXOR演算を手計算で説明し、2進数表現での理解を深めています。 最後に、CPUの説明などで用いられるXORの記号を紹介しています。

 

Pythonでビット演算子の論理積に触れる

/** Geminiが自動生成した概要 **/
今回の記事では、Pythonのビット演算子の一つである論理積(&&)について解説しています。論理積は2つの値の両方が1の場合にのみ1を返す演算です。 記事では、変数 `cmdout` と16進数 `0x80` の論理積を計算するコードを例に挙げています。`cmdout` は、前の処理で192(2進数で `0b11000000`)に設定されています。`0x80` は10進数で128、2進数で `0b10000000` です。 これらの論理積をとると、`0b10000000` となり、これは10進数で128です。 記事では、この計算がSPI通信でのデータ送受信に関連していることを示唆していますが、具体的な意味についてはまだ明らかにされていません。 最後に、論理積を表す電子回路の記号も紹介されています。

 

Pythonでビット演算子の論理和に触れる

/** Geminiが自動生成した概要 **/
Pythonのビット演算子、特に論理和(OR)について解説しています。 記事では、UARTとSPIの通信方式の比較を題材に、SPI通信のコードで使われているビット演算を理解しようと試みています。 まず、`|=`という演算子がビットごとの論理和を計算し、結果を変数に代入するものであることを説明します。 具体例として、`cmdout |= 0x18`というコードを解説しています。初期値0の変数`cmdout`と16進数`0x18`(2進数では`00011000`)の論理和を計算することで、`cmdout`の値が`00011000`となり、10進数では24になることを示しています。 最後に、論理和を表す回路図の記号も紹介しています。

 

UARTについてを知る3

/** Geminiが自動生成した概要 **/
この記事では、UART通信におけるボーレートについて解説しています。ボーレートとは、1秒間に送受信するデータビット数を表し、送受信側で一致させる必要があります。 記事では、一般的なボーレートの値として9600、115200などを紹介し、Micro:bitとRaspberry Piを接続する際のコードを例に、送受信側でボーレートを合わせる必要があることを説明しています。 UARTは非同期通信のため、クロック信号を用いずにデータを送受信します。そのため、ボーレートを合わせることでデータの整合性を保っています。

 

UARTについてを知る2

/** Geminiが自動生成した概要 **/
この記事は、micro:bitのMicroPythonを使ってUART通信の基礎を解説しています。UARTではHIGH(1)とLOW(0)の信号でデータを送受信し、文字列をバイト型に変換して送信します。 記事では、データ送信の仕組みとして、アイドル状態(1)、スタートビット(0)、データビット、パリティビット、ストップビット(1)からなるシリアル通信の構造を図解で説明しています。 特に、パリティビットはデータ送信時の誤り検出符号として、奇パリティと偶パリティがあることを解説し、micro:bitでの設定方法にも触れています。 最後に、ボーレートについても触れる予定としていますが、詳細は次回に持ち越しとなっています。

 

UARTについてを知る1

/** Geminiが自動生成した概要 **/
この記事は、UARTを用いたシリアル通信について解説しています。 UARTとは何か、Raspberry Piとmicro:bitを接続した図を例に、TXピンとRXピンを用いてどのようにデータがやり取りされるのかを説明しています。 具体的には、文字列"abc"をUART通信で送信する際に、コンピュータ内部では文字コードを用いて処理されていることを解説し、Go言語でのバイト型変換例を示しています。 さらに、microbitのUART設定における"bits=8"というパラメータを取り上げ、1ビットと8ビットの関係、表現できる数値範囲について触れています。 最後に、"0x610x620x63"という16進数表記で送信データ例を示し、次回にuart.initのパラメータ解説を行うことを予告しています。

 

ESP8266のUARTその2

/** Geminiが自動生成した概要 **/
この記事は、ESP8266をUARTの受信側としてRaspberry Piと通信する方法を解説しています。 前回の記事ではESP8266から送信したデータにREPLの情報が含まれていましたが、今回は受信側にすることでREPL情報を含まないデータを受信できることを確認しています。 具体的には、ESP8266側で受信したデータを少し変更してRaspberry Piに送り返すPythonコードを記述し、Raspberry Pi側では"send from pi."というメッセージを繰り返し送信するPythonコードを記述しています。 その結果、Raspberry Pi側で"received:send from pi."というメッセージが表示され、REPL情報を含まないデータが受信できていることが確認できました。

 

ESP8266のUART

/** Geminiが自動生成した概要 **/
ESP8266のREPLは、シリアル接続を通じてMicroPythonと対話するためのコマンドラインインターフェースです。UART0がデフォルトで使用され、ボーレートは115200bpsです。REPLでは、コードの実行、変数の確認、関数の呼び出しなどが行えます。Ctrl-Aでプロンプトの先頭、Ctrl-Eで末尾に移動できます。Ctrl-Bで一文字戻り、Ctrl-Fで一文字進めます。Ctrl-DでREPLを終了し、プログラムの実行を再開します。REPLはMicroPythonの開発やデバッグに役立つ強力なツールです。

 

BBC Micro:bitのUART

/** Geminiが自動生成した概要 **/
BBC Micro:bit (microbit) の UART 通信では、microbit から Raspberry Pi へのデータ送信と、その逆の受信が可能。microbit は `uart.any()` 関数を使用して受信データを待ち受け、Raspberry Pi はシリアルポートを介して通信する。データの送受信を確実に行うには、microbit と Raspberry Pi 間の TX/RX ピンの正しい接続と、双方で一致するボーレートの設定が重要。また、microbit では `uart.init(115200)` を使用してシステムを初期化することも推奨される。これらの手順に従うことで、microbit と Raspberry Pi 間の双方向 UART 通信を実現できる。

 

ESP8266とRaspberry Piでソケット通信を試す

/** Geminiが自動生成した概要 **/
この記事では、ESP8266モジュールをクライアント、Raspberry Piをサーバーとしたソケット通信を試みています。 まず、ESP8266側でWiFi接続を行い、サーバー側のIPアドレスとポート番号を指定してソケット通信を行います。 記事では、ESP8266から"send socket from esp8266"というメッセージをサーバーに送信し、サーバー側で受信できていることを確認しています。 これにより、ローカルネットワーク内でESP8266からRaspberry Piにデータを送信できることが確認できました。今後は、温度などのデータを送受信する方法を検討していく予定です。

 

コンピュータ二台でソケット通信を試す

/** Geminiが自動生成した概要 **/
この記事は、二台のコンピュータ間でローカルネットワークを通じてソケット通信を行う方法を解説しています。 まず、Raspberry Piをサーバー側にして、そのローカルIPアドレスを調べます。次に、Pythonで記述したサーバープログラムを、調べたIPアドレスを使って修正します。クライアント側にはLinuxマシンを使用し、同様にローカルIPアドレスを調べます。 その後、クライアントプログラムを実行し、サーバープログラムが実行されているRaspberry PiのIPアドレスとポート番号を指定して接続します。 記事では、接続が成功したことを確認後、NodeMCUとRaspberry Piでのソケット通信に進むことを示唆しています。

 

コンピュータ一台でソケット通信を試す

/** Geminiが自動生成した概要 **/
この記事では、マイコンを用いたデータ送信システム構築に向けて、まずは一台のPCでのソケット通信を試行しています。 具体的には、Pythonを用いて、受信側(サーバー)と送信側(クライアント)のプログラムを作成し、同一PC上で動作させています。 サーバー側はポート番号12345で接続を待ち受け、クライアント側からの接続があると、入力されたデータを受信し、"Successed!"というメッセージを返信します。 記事では、それぞれのプログラムのコード例と実行結果を示し、実際にデータの送受信が成功していることを確認しています。 今後は、2台のPC間でのソケット通信に挑戦する予定です。

 

NodeMCUでHTTP GETリクエストを試してみた

/** Geminiが自動生成した概要 **/
NodeMCUを使ってHTTP GETリクエストを試行した記録です。 記事では、MicroPythonのソケット通信を使って"http://www.example.com/"にGETリクエストを送信し、"200 OK"レスポンスとHTMLを取得できました。 しかし、"https://saitodev.co/"のようにHTTPSのURLでは失敗しました。これは、HTTPS通信に対応するためにコードを修正する必要があるためです。 記事では、将来WiFi経由でデータ送信を行う際にHTTPS通信が必要になると述べています。

 

NodeMCUをWebサーバにしてみた

/** Geminiが自動生成した概要 **/
NodeMCU(ESP8266)をWebサーバにする実験。MicroPythonのサンプルコードを参考に、GPIOピンの状態をWebページに表示する仕組みを作成。NmapでNodeMCUのIPアドレスを特定しブラウザからアクセスした結果、GPIOピンの状態がリアルタイムに確認できた。HTTP通信の基礎を学ぶ良い機会となり、今後は外部からのリクエストに応じて処理を行う仕組みも試したい。

 

NodeMCUをWiFiのアクセスポイントにしてみる

/** Geminiが自動生成した概要 **/
この記事は、NodeMCU(ESP8266)をWiFiのアクセスポイントにする方法を解説しています。 筆者は、サンプルコードを参考に、NodeMCUにWiFi接続とアクセスポイント設定のコードを記述し実行しました。 その結果、コードに記述した「ESP-AP」という名前のアクセスポイントが作成されたことを確認しました。 しかし、パスワードが設定されていないため、現時点では接続できない状態です。 記事では、引き続きWiFi用語の解説や接続方法について掘り下げていくことを示唆しています。

 

NodeMCUにファームウェアをインストールする

/** Geminiが自動生成した概要 **/
ESP8266 NodeMCUモジュールにMicroPythonファームウェアをインストールするには、esptoolツールを使用します。ファームウェアのbinファイルをダウンロードし、`esptool`コマンドを使用してフラッシュを消去してから、新しいファームウェアを書き込みます。 ファームウェアがインストールされたら、Thonny IDEを使用してLチカプログラムを作成します。ThonnyをESP8266に接続し、`main.py`という名前でプログラムを保存します。プログラムを実行すると、NodeMCUのLEDが点滅します。

 

BBC Micro:bitでpHメーターから得られるアナログ値を読み込んでみた

/** Geminiが自動生成した概要 **/
施設栽培で鉄欠乏が起きると、収量低下や品質低下に繋がるため注意が必要です。鉄欠乏は初期症状の見落としが課題となります。本記事では、鉄欠乏の症状と対策、そして早期発見に役立つ簡易的な測定方法について解説しています。初期症状は葉脈間が黄化するクロロシスで、進行すると葉全体が白化し、枯死に至ることもあります。対策としては、pH調整や鉄資材の施用が有効です。早期発見には、葉緑素計を用いた測定が有効で、数値の低下は鉄欠乏の初期段階を示唆します。日々の観察と葉緑素計による測定を組み合わせることで、鉄欠乏を予防し、収量と品質を確保しましょう。

 

pHの測定を理解する為にリトマス試験紙から触れる

/** Geminiが自動生成した概要 **/
この記事は、栽培用の測定器について理解を深めるための導入として、リトマス試験紙を取り上げています。リトマス試験紙は、水溶液のpHを測定し、酸性かアルカリ性かを判定するために用いられます。 記事では、リトマス試験紙の由来である「リトマスゴケ」について触れ、それが地衣類の一種であることを説明しています。地衣類は藻類と菌類の共生体で、空気のきれいな場所に生息し、大気汚染の指標にもなっています。 そして、リトマスゴケやウメノキゴケの色素がpH測定にどのように関わっているのか、次の記事で詳しく解説することが予告されています。

 

プログラミング教育で注目すべきはARM + Debian + Pythonであるはずだ

/** Geminiが自動生成した概要 **/
プログラミング教育の格差解消には、安価で高性能なARMアーキテクチャ搭載PCが有効である。Raspberry PiはDebian系OSとPythonを標準サポートし、電子工作から本格的な開発まで対応可能なため、ChromebookやMicro:bitよりも優れている。ARM対応ソフトの充実が課題だが、低価格でDebianやPythonに触れられる環境は、OSSやサーバー学習へのハードルを下げ、将来的なIT人材育成に貢献する。

 

Raspberry PiでLCDに文字列を出力する

/** Geminiが自動生成した概要 **/
この記事では、Raspberry PiとI2C接続のLCDディスプレイを使って文字列を表示する方法を解説しています。 まず、Raspberry Piの設定でI2Cを有効化し、LCDのI2CモジュールをGPIOピンに接続します。接続が正しければ、「i2cdetect -y 1」コマンドでI2Cアドレスが表示されます。 次に、OSOYOOのライブラリ「i2clcda.py」を使ってPythonコードを作成し、LCDに文字列を表示します。コードでは、ライブラリをインポート後、「lcd_init()」でLCDを初期化し、「lcd_string()」関数で文字列と表示位置を指定して出力します。 表示されない場合は、I2Cモジュールのポテンショメータを調整してコントラストを調整する必要があります。

 

Rapberry PiとBBC Micro:bitでUSB経由のシリアル通信を試す

/** Geminiが自動生成した概要 **/
この記事では、Raspberry PiとBBC Micro:bit間でUSB経由のシリアル通信を行う方法を解説しています。 従来のUART通信と異なり、USB接続ではRaspberry Pi側のシリアルポート設定が不要です。Micro:bit側で温度データを送信するコードを作成し、Raspberry Pi側では"/dev/ttyACM0"をデバイス、"115200"をボーレートとしてシリアル通信を設定します。 これにより、Raspberry Pi側でMicro:bitから送信された温度データを受信し、コンソールに表示することができます。USB接続は、GPIOの使用状況に影響されず、より簡便な方法と言えます。

 

Rapberry PiとBBC Micro:bitでUARTを試す

/** Geminiが自動生成した概要 **/
Micro:bitとサーボモーターを使って環境制御の基礎を学ぶ記事。サーボモーターの角度制御をMicro:bitのプログラムから行う方法を紹介。Muエディタを使用し、角度を指定するシンプルなコードから、連続的な動きや特定角度への移動、アナログ入力による制御まで段階的に解説。具体的な接続方法やコード例、ライブラリの活用法も示し、初心者にも分かりやすくサーボモーター制御の基礎を習得できる内容となっている。最終的には、植物育成ライトの角度調整といった具体的な応用例も示唆し、環境制御への応用を促している。

 

環境制御を学ぶ為にMicro:bitでサーボモータを学ぶ

/** Geminiが自動生成した概要 **/
Micro:bitとサーボモーターを用いて環境制御学習の第一歩を踏み出した著者は、サーボモーターの動作原理を学ぶため、LEGOブロックとミニフィグを使った回転実験を行った。MakeCodeで作成したコードでMicro:bitからサーボモーターに角度指令を送ると、90度を基準に、大きい値では反時計回り、小さい値では時計回りに回転する。しかし、指定角度で停止せず、一回転し続けるという問題に直面。これは、指令値が目標角度ではなく、一定時間内の回転角度を表すためであった。 著者は、サーボモーターの停止方法について疑問を抱いている。

 

ChromebookでPythonのmatplotlibを試してみた

/** Geminiが自動生成した概要 **/
ChromebookでPythonの数学ライブラリNumPyと可視化ライブラリmatplotlibの動作検証を行いました。ASUS Chromebook Detachable CM3で、Linux環境を利用し、`sudo apt install`コマンドで必要なパッケージをインストールしました。TkinterのGUI表示、及び以前作成したmatplotlibを使ったコードの実行に成功。Windows10のWSL2環境ではGUI表示ができなかった一方で、Chromebookでは問題なく動作しました。今後はデータサイエンス向けプラットフォームAnacondaのChromebookでの動作検証も検討しています。

 

ARM版ChromebookにDropboxをインストールする

/** Geminiが自動生成した概要 **/
ARM版ChromebookでLinuxアプリのDropboxを使うには、.debパッケージが使えないためDbxfsを利用する。pip3でDbxfsをインストール後、Dropboxフォルダを作成し、dbxfsコマンドを実行。表示されるURLにアクセスし、Dropboxにログインして認証コードを取得、端末に入力する。パスフレーズを設定すれば、Linuxファイル配下でDropboxのファイルが操作可能になる。Android版DropboxはChromebookのFilesのLinux共有に対応していないため、この方法が必要。

 

php-webdriverでAceのコードエディタに文字を入力する

/** Geminiが自動生成した概要 **/
`executeScript`は、ChromeDriverでJavaScriptを実行するメソッドです。第一引数に実行するスクリプト、第二引数にオプションの引数配列を取ります。このメソッドは、ブラウザコンテキストでJavaScriptを実行し、その結果を返します。Aceエディタへの入力は、エディタオブジェクトの`setValue`メソッドをJavaScript経由で呼び出すことで実現できます。上記例では、`$script`に`setValue`呼び出しを定義し、`$html`をエディタに設定しています。`executeScript`の第二引数配列は、`$script`内の`arguments`オブジェクトにマッピングされます。これにより、PHPからJavaScript関数をパラメータ付きで実行できます。

 

PHPのexec関数でセッションの値の引き継ぎに苦戦した時のメモ

/** Geminiが自動生成した概要 **/
Amazon Linux 2のLAMP環境で、PHPの`exec`関数を使ってGoogle Analytics APIにアクセスする際にセッションの引き継ぎに失敗した。`exec`で実行した`cmd.php`内で`session_start()`してもセッション情報が取得できなかった。調査の結果、`cmd.php`内では`session_save_path()`の戻り値が空文字列になっていた。`session_save_path("/var/lib/php/session");`を`session_start()`前に追加することでセッション情報が取得できるようになり、APIアクセスも成功した。`php.ini`の`session.save_path`の設定が原因と考えられるが、未検証。

 

緑の溜池でアイリスの花が咲いていた

/** Geminiが自動生成した概要 **/
近所の溜池でアヤメ科の植物(アイリス)が咲いていた。この溜池は緑藻の増殖により緑色だが、いずれ動物プランクトンが増え茶色に変わるという。緑色は光合成による酸素放出を、茶色は呼吸による酸素消費を意味する。プランクトンの種類が変化しても微量要素の使用量はほぼ変わらないと考えられる。アイリスにとって、溜池の色変化はストレスになり得るのか、緑藻の増殖に合わせた開花戦略があるのか疑問に思った。

 

Go言語でQtを扱ってみる on Ubuntu

/** Geminiが自動生成した概要 **/
Ubuntu 18.04にGo言語とQtをインストールし、GoでQtアプリケーションを開発する手順を記録した記事です。Go 1.11、Qt 5.11.1をインストールし、QtのサンプルWebブラウザの実行を確認後、GoのQtバインディングパッケージ`github.com/therecipe/qt`をインストールしました。`qtsetup`コマンドでパッケージの準備中に問題が発生しましたが、`generate`終了時点で中断し、サンプルプログラムを実行したところ、正常に動作することを確認しました。

 

JavaScriptのAnalyzerNodeで拾った音の周波数を可視化してみる1

/** Geminiが自動生成した概要 **/
この記事は、JavaScriptで音の周波数を可視化する方法を学ぶための導入部分です。音のデジタル化に不可欠なフーリエ変換の概念を、三角関数のグラフを用いて分かりやすく解説しています。sin波、cos波、そしてそれらの合成波のグラフを示し、複雑な波形も三角関数の組み合わせで表現できることを説明。式の係数を配列データとして取り出すことで、音をデジタルデータとして扱えるようになることを示しています。最後に、高速フーリエ変換(FFT)に触れ、次回JavaScriptでの実装を示唆しています。記事には、HTML5 Canvasを使ったsin波を描画するコード例も掲載されています。

 

河川の草群の中心にいるのはキショウブ

/** Geminiが自動生成した概要 **/
鴨川の草むらで黄色い花が目立ち、アヤメ科の特徴からキショウブと判明。調べると、環境省が「要注意外来生物」に指定し、在来種との競合や駆逐のおそれがある植物だった。繁殖力の強いキショウブの花茎に、巻きひげで他の植物に絡みつくカラスノエンドウが巻き付いていたが、花茎は少ししか曲がっておらず、キショウブの強さを実感させる。

 

妻にプログラミングを教えることにした-後編

/** Geminiが自動生成した概要 **/
妻にGo言語を教えることにした。プログラミングを教えることで、教える側も理解を深め、学習効率が上がるためだ。Go言語を選んだ理由は、初心者にも扱いやすい点が多いからである。go runでLL言語のように手軽に実行でき、go buildでコンパイルもできる。システムプログラミングにも触れられるため、コンピュータの仕組み理解に役立つ。go fmtやgo importによる自動整形・補完でコードの書き方に迷うことも少ない。また、オブジェクト指向がないため学習コストが低い。冗長になりやすい、他言語学習時に混乱する可能性があるという欠点はあるものの、プログラミング入門には最適だと考える。妻の変化が楽しみだ。

 

土壌分析アプリSoil3 on SOY Shop

/** Geminiが自動生成した概要 **/
長野県栄村小滝集落は、標高が高く冬季の積雪が多い地域。良質な米作りには土壌の理解が不可欠で、土壌図インベントリーとシームレス地質図を活用。インベントリーからは「黒ボク土」と判明し、保水性が高い反面、養分保持力が低い特性が明らかに。地質図からは、付近に蛇紋岩が多く分布し、土壌が弱アルカリ性であると推測。これらの情報から、小滝集落の土壌は水はけがよく、ミネラル豊富な一方、窒素が流亡しやすい特徴を持つと結論づけ、適切な施肥設計の必要性を示唆した。実際、小滝集落の土壌はpH7.0~7.2を示し、分析結果と合致した。この事例は、公開データを用いた土壌分析の有効性を示している。

 

PHPでPythonの機械学習のライブラリを利用してみる

/** Geminiが自動生成した概要 **/
PHPでPythonの機械学習ライブラリを利用する方法を検証。サンプルデータを使用してk近傍法によるアイリスの品種判定を実施。Pythonスクリプトで学習と判定を行い、PHPスクリプトでデータを送受信することで、PHPでPythonの機械学習機能を活用できることを確認した。

 

シグモイド型BB肥料のシグモイドって何?

/** Geminiが自動生成した概要 **/
シグモイド曲線は、ある点付近で急速に傾斜が変わるグラフを表します。シグモイド型のBB肥料は、初期に緩やかに効き始め、その後一気に効果を発揮します。この特性は、長期的な効果が必要な作物の周年栽培に適しています。 一方、リニア型のBB肥料は直線的な効き方をするため、一定期間にわたって持続的に効果を発揮します。BB肥料のシグモイド型とリニア型を適切に使い分けることで、作物の成長段階や栽培条件に応じた効率的な施肥が可能となります。

 

二点を端点とする線分を描写する

/** Geminiが自動生成した概要 **/
本書では、Pythonで行列プログラマーの課題に挑戦し、二点を端点とする線分を描写する方法を解説している。ベクトルの加算・減算をコンピュータで表現するには凸結合の概念が重要となる。 具体的には、二点v, uの座標に対し、α(0≦α≦1)を用いてαu + (1-α)vを計算することで、線分上の点を表現できる。 コード例では、0.01刻みでαを変化させ、100個の点を生成することで線分を描写している。 結果として、pt1とpt2を端点とする線分が描画された。

 

葉は展開する毎に下の葉の位置から微妙にずれる

/** Geminiが自動生成した概要 **/
植物の葉は、光を効率的に受けるために、重なりを避けながら巧みに配置される。葉序と呼ばれる規則があり、例えばキャベツやハクサイは144度ずつ葉をつける2/5葉序を持つ。Pythonでこの配置を可視化すると、5枚で円を2周する様子がわかる。しかし、単純な144度回転では葉が重なってしまうため、実際には茎の捻れ(+5度)が加わり、新しい葉は古い葉を避けて展開する。このモデルを葉の数(N)を増やしてシミュレーションすると、N=20や30では実際のロゼット状の植物の配置に近づく。

 

オイラーの公式をガウス平面に表示してみた

/** Geminiが自動生成した概要 **/
オイラーの公式e^(θi) = cosθ + i*sinθ を検証するために、θに1〜360を代入し、Pythonでガウス平面にプロットした。右辺をプロットすると半径1の円が描かれた。同様に左辺e^(θi)をプロットしても同じ円が得られた。オイラーは右辺を4回微分することで左辺を発見したが、こうして視覚的に確認すると、その発見の凄さが改めて実感できる。

 

ガウス平面上に描写した模様を半分にスケーリングして回転させる

/** Geminiが自動生成した概要 **/
画像を複素数の集合としてガウス平面に描画し、π/4回転かつ1/2スケーリングを行う方法について記述されています。スケーリングは複素数を1/2倍、回転はe^(θi)を乗算することで実現します。θにπ/4を代入することで45度回転します。オイラーの公式e^(θi) = cosθ + i*sinθに基づき、Pythonの内包表記を用いて効率的に計算しています。最終的に、スケーリングと回転を組み合わせた処理を行い、目的の画像変換を実現しています。

 

Pythonの内包表記

/** Geminiが自動生成した概要 **/
生物学出身の筆者は数学を学び直す中で、行列プログラマーの練習問題1.4.10に挑戦した。画像は多重リストとして読み込まれ、各要素は色のタプルを持つ。課題は内包表記を用いて、明度120以下のピクセルを複素数に変換し、ガウス平面にプロットすることだった。 初期の試行ではy軸が反転したため、画像の高さを利用してy座標を調整することで解決した。最終的な内包表記は`pts = {(x+(189 - y)*1j) for (y, d) in enumerate(data) for (x, v) in enumerate(d) if v[0] < 121}`となり、正しく画像をガウス平面にプロットできた。

 

当サイトをHTTP/2対応して表示の爆速化してみた

/** Geminiが自動生成した概要 **/
Let's Encryptの証明書更新を自動化するため、CertBotを導入した。以前の方法は使えなくなったため、公式サイトの手順に従い、snapd経由でCertBotをインストール。`certbot certonly --apache`コマンドで証明書を取得し、Apacheの設定を自動更新。 cronで`certbot renew`を定期実行することで自動更新を実現。`--dry-run`オプションでテストも可能。以前の`letsencrypt-auto`コマンドは非推奨となったため、CertBotへの移行が必須。

 

さくらのVPSにPHP7を入れてSOY CMSを動かしてみた

/** Geminiが自動生成した概要 **/
さくらのVPSにPHP7をインストールし、SOY CMSを動かす手順を解説した記事。共有サーバーの表示速度低下を改善するため、VPSに移行。手順は既存記事を参考に、PHPインストール部分を更新。 Apache2.4インストール後、Ondřej Surý氏のPPAを用いてPHP7.0を導入し、関連モジュールをインストール、Apache2の設定を行った。PHP7でSOY CMSを動かすにはファイル修正が必要で、修正済みパッケージはsaitodev.co/soycms/からダウンロード可能。

 

サイバー攻撃が何と多いことか

/** Geminiが自動生成した概要 **/
知人の知人のWordPressサイトが乗っ取られ、攻撃サーバーとして悪用された事例を紹介。脆弱なCMSバージョン、簡単なパスワード、推測されやすい管理画面URLが原因だった。また、知人はトロイの木馬、他の知人は無害なファイル増産プログラムの被害に遭い、筆者自身もIEの設定を書き換えられる被害を受けた。攻撃者は無防備なサイトやPCを狙うため、セキュリティ対策は必須。対策学習として、攻撃者の心理を理解できる「サイバーセキュリティプログラミング」や、Webセキュリティの基礎知識を学べる「徳丸浩のWebセキュリティ教室」などを推奨。インターネットの危険性を常に意識し、無関係な人などいないことを認識すべきだと警告している。


Powered by SOY CMS   ↑トップへ