ブログ内検索

プログラミング教材開発
大阪府高槻市原地区で肥料教室を開いています
検索キーワード:「二次鉱物」
 

蛇紋岩土壌は植物にとって過酷な環境

/** Geminiが自動生成した概要 **/
蛇紋岩土壌は、貧栄養、高重金属、高pHといった特徴から植物にとって過酷な環境です。特にニッケル過剰が問題で、植物は鉄欠乏に似た症状を示します。ニッケルは鉄の吸収を阻害するのではなく、鉄と同時に吸収され、鉄の本来の場所にニッケルが入り込むことで、植物は鉄欠乏だと錯覚し、更なる鉄とニッケルの吸収を招き、悪循環に陥ります。しかし、蛇紋岩土壌にも適応した植物が存在し、その耐性メカニズムを理解することが、この土壌での栽培攻略につながります。

 

造岩鉱物の成れの果て

/** Geminiが自動生成した概要 **/
造岩鉱物から粘土鉱物への風化の後、カオリナイトはさらに水と反応してギブス石と二酸化ケイ素になる。ギブス石はCECがなく、二酸化ケイ素も栽培に不利なため、造岩鉱物の風化の行き着く先は栽培難易度の高い赤黄色土と呼ばれる土壌となる。 赤黄色土は日本土壌インベントリーで容易に確認できる。ギブス石はさらに風化してボーキサイトになる可能性があるが、ここでは触れない。

 

造岩鉱物のかんらん石が風化するとどうなるか?

/** Geminiが自動生成した概要 **/
かんらん石は風化により、2価鉄が溶け出して水酸化鉄に変化する。また、ケイ酸も溶出し、重合して粘土鉱物に近づく。一次鉱物のかんらん石は二次鉱物として緑泥石を経てバーミキュライトになる。この反応では、かんらん石のアルミニウム以外の成分が溶脱し、ケイ酸は重合して粘土鉱物の形成に関与する。

 

西の仁多米、東の魚沼コシヒカリ

/** Geminiが自動生成した概要 **/
仁多米の生産地である奥出雲町は、花崗岩が多く、特に鬼の舌振に見られる粗粒黒雲母花崗岩は風化しやすく、鉄分を多く含んでいます。この鉄分が川を赤く染め、水田にミネラルを供給している可能性があります。さらに、土壌中の黒雲母も風化によってバーミキュライトを生成し、稲作に良い影響を与えていると考えられます。これらの要素が、仁多米の高品質に寄与していると考えられ、他の地域での稲作のヒントになる可能性があります。

 

リン鉱石は何処にある?

/** Geminiが自動生成した概要 **/
リン鉱石の起源を探る記事。生物由来説に加え、トリプル石という鉱物由来の可能性を考察。トリプル石は花崗岩ペグマタイトに存在し、リン鉱石の主成分である燐灰石も周辺で発見されることから、二次鉱物として生成された可能性を示唆。しかし、トリプル石は希少であるため、鉱物由来のリン酸は生物に吸収され、量が減った可能性も示唆している。

 

緑肥について学んでいた時に指針となった本

/** Geminiが自動生成した概要 **/
マルチムギは、土壌の団粒化を促進し、排水性と通気性を向上させる効果を持つ緑肥。劣化した圃場でも旺盛に生育し、土壌改良に役立つ。筆者は、マルチムギを播種した区画と播種していない区画で比較試験を実施。マルチムギを播種した区画では、播種していない区画に比べ、土壌硬度が低く、透水性が高いという結果が得られた。これは、マルチムギの根が土壌をほぐし、団粒化を促進したためと考えられる。マルチムギは、耕作放棄地など、劣化した土壌の改良に有効な緑肥と言える。

 

京都北部の舞鶴全般の土壌の考察

/** Geminiが自動生成した概要 **/
舞鶴でのグローバック栽培に関する勉強会をきっかけに、地域の土壌と水質について考察。グローバック栽培は初期費用が安く土壌病害のリスクも低い一方、水耕栽培のため原水のpH調整が重要となる。舞鶴のある施設では原水pHが7.5と高く、周辺の地質が斑れい岩であることを確認。斑れい岩は塩基性火成岩で、pHを高める鉱物を多く含むため、水質も高pHになると推測。さらに、塩基性火成岩はカリウム含有鉱物が少なく、土壌分析の結果もカリウム不足を示唆。カリウムは根の吸水に重要で、舞鶴の栽培ではカリウム肥料の施用が必須。土壌だけでなく、散水に使う川の水のミネラル組成も考慮する必要がある。

 

植物はどのようにしてシリカを吸収するか?

/** Geminiが自動生成した概要 **/
植物は土壌中からケイ酸を吸収し、強度を高める。吸収の形態はSi(OH)4で、これはオルトケイ酸(H4SiO4)が溶解した形である。オルトケイ酸はかんらん石などの鉱物に含まれ、苦鉄質地質の地域ではイネの倒伏が少ない事例と関連付けられる。一方、二酸化ケイ素(シリカ)の溶解による吸収は限定的と考えられる。ケイ酸塩からの吸収は、酸による反応が推測されるが、詳細は不明。可溶性ケイ酸はアルミニウム障害も軽減する効果を持つ。つまり、イネのケイ酸吸収は、土壌中の鉱物組成、特にかんらん石の存在と関連し、可溶性ケイ酸の形で吸収されることで、植物の強度向上に寄与する。

 

植物が利用できるシリカはどこにある?

/** Geminiが自動生成した概要 **/
あそこの畑がカリ不足している理由を、土壌中のカリウムの形態に着目して解説している。日本の土壌はカリウム含有量が多いと言われるが、それはカリ長石などの形で存在しており、植物が直接利用できる形態ではない。植物が利用できるのは土壌溶液中のカリウムイオンだが、その量は土壌全体の数%に過ぎない。土壌溶液中のカリウムイオンが不足すると、植物はカリウム欠乏症を起こし、収量低下や品質劣化につながる。したがって、土壌中のカリウム総量ではなく、実際に植物が利用できる形態のカリウム量を把握することが重要である。

 

粘土鉱物を理解する旅2

/** Geminiが自動生成した概要 **/
粘土鉱物の理解を深めるため、各地のジオパークや博物館で得た情報をもとに、土壌における役割を考察している。地震や火山活動により長石などのアルミノ珪酸塩が粘土鉱物に変質する過程に着目し、図鑑で長石の種類や変質経路を調べた。温泉のpH変化と粘土鉱物の関係、黒ボク土のアロフェンと非アロフェンの起源にも触れ、どちらもアルミノ珪酸塩の二次鉱物であることを指摘。最終的に、アルミノ珪酸塩の分布と火成岩の関係へと議論を展開する。

 

黒ボク土は本当に良い土なのか?前編

/** Geminiが自動生成した概要 **/
黒ボク土は通気性・保水性に優れる反面、アルミニウム障害という問題を抱えています。本稿では、黒ボク土の形成過程を、粘土鉱物であるアロフェンと非アロフェンに着目して解説しています。黒ボク土は、玄武岩質火山灰を基材とし、アロフェン質と非アロフェン質に分類されます。非アロフェン質はベントナイトなどの2:1型粘土鉱物ですが、アロフェン質は火山ガラスから生成されるアロフェンを含みます。アロフェンの生成には玄武岩質火山灰由来の成分が関与していると考えられています。

 

客土で川砂を入れる意義

/** Geminiが自動生成した概要 **/
畑作を続けると土壌中の鉱物が溶脱し、作物に悪影響が出る。昔は米と野菜の転作、特に水田に川から水を引くことで、川水に含まれるミネラルが供給され、土壌の鉱物不足を補っていた。また、洪水も新しい鉱物を運ぶ役割を果たしていたが、洪水を人為的に再現する手段として川砂客土が生まれた。川砂はミネラル豊富な一次鉱物が多いが、二次鉱物への風化には時間がかかる。つまり、川砂客土は、水田稲作における川からのミネラル供給や、洪水による新たな鉱物の供給を人為的に再現し、土壌のミネラルバランスを維持するための伝統的な手法と言える。

 

土壌のアルミニウムが腐植を守る

/** Geminiが自動生成した概要 **/
可溶性ケイ酸は植物の成長を促進する効果がある一方で、土壌中でケイ酸がどのような働きをしているかは未解明な部分が多い。ケイ酸は植物に吸収されると、細胞壁に蓄積して物理的強度を高め、病害虫や環境ストレスへの耐性を向上させる。また、ケイ酸は土壌中のアルミニウムと結合し、アルミニウム毒性を軽減する役割も持つ。さらに、ケイ酸はリン酸と鉄の可給性を高める効果も示唆されている。これらの効果は土壌の種類やpH、他の養分との相互作用に影響されるため、更なる研究が必要とされている。

 

果実内発芽から見える土の状態

/** Geminiが自動生成した概要 **/
カボチャの果実内発芽は、土壌の深刻な風化を示唆する指標となる。果実内発芽は、種子の休眠を誘導するアブシジン酸の不足によって引き起こされ、その原因として土壌中の硝酸態窒素過多またはカリウム不足が挙げられる。硝酸態窒素は施肥で調整可能だが、カリウムは土壌の一次鉱物の風化によって供給されるため、連作により枯渇しやすい。果実内発芽が発生した場合、土壌の風化が進みカリウム供給源が不足している可能性が高いため、単純な作物変更や休耕では改善が難しい。土壌の根本的な改善策として、一次鉱物を含む資材の投入や、カリウムを保持する腐植を増やす緑肥の導入などが有効と考えられる。

 

山の岩は最終的に粘土に行き着く

/** Geminiが自動生成した概要 **/
粘土は粒子の大きさと鉱物組成で定義され、コロイド状の性質を持つ。コロイドとは、疎水性と親水性の部分を持つ物質が水中で特定の形状に集まる現象で、粘土鉱物もこの性質を持つ。ハロイサイトは1:1型粘土鉱物で中空管状のコロイドを形成し、水を内部に含む。モンモリロナイトやバーミキュライトのような2:1型粘土鉱物は薄板状で、こちらも疎水性と親水性を持つためコロイドを形成する。バーミキュライトは加熱により膨張した形状で利用されることが多い。粘土は粒子が小さいが、必ずしも土を重くするわけではない。真砂土は風化した花崗岩で、様々な鉱物を含み、粘土もその一部である。

 

バーミキュライトという名の薄板状粘土

/** Geminiが自動生成した概要 **/
バーミキュライトは雲母由来の薄板状粘土鉱物で、保肥力・保水力が高い。モンモリロナイトと同じ2:1型鉱物。蛭石(ひるいし)を高温で膨張させたもので、蛭石は雲母が風化したもの。化学式から、風化により鉄とマグネシウムの供給源となり、保肥力と保水性が向上することがわかる。比較的高価なため、露地での使用は難しい。

 

あそこからヤブガラシが消えた

/** Geminiが自動生成した概要 **/
ヤブガラシが生い茂っていた畑が、廃菌床と二次鉱物の投入により土質改善後、ほぼ消滅した。ヤブガラシは土壌の指標植物になり得るのか? 図鑑には記載がない。ヤブガラシが消えた土壌には弱酸性土壌の指標植物シロザが生育していた。シロザは土壌に良い影響を与える緑肥候補。ヤブガラシとシロザの生育時期は重なるため、ヤブガラシ優勢下ではシロザは育ちにくい。土壌pHが安定し緩衝能を持つ土壌ではヤブガラシは弱体化するようだ。ヤブガラシ旺盛な土壌は作物に不向き。ヤブガラシの繁茂は土壌改善のサインと言える。

 

アジサイの青の肥料

/** Geminiが自動生成した概要 **/
アジサイの青色発色は土壌pHの低さではなく、アルミニウム量に依存する。市販の青色発色用肥料は、発酵魚粕、硫安、ミョウバンを含む。硫安は強い生理的酸性肥料だが、魚粕でpH低下を抑えていると推測される。ミョウバン(硫酸カリウムアルミニウム)は中性で、アルミニウム供給源となる。つまり、酸性土壌でなくとも、アルミニウムが吸収しやすい形で存在すればアジサイは青くなる。これは、アルミニウム流出の安定しない土壌環境でも青いアジサイが群生する理由を説明できる。

 

アジサイが梅雨に咲く理由はなんだろう?

/** Geminiが自動生成した概要 **/
アジサイは梅雨の時期に美しく咲き、鮮やかな青色は土壌中のアルミニウムに由来する。雨は二酸化炭素を吸収し炭酸水となり、土壌の鉱物を溶かす。その過程で水酸化アルミニウムが放出され、梅雨の時期に土壌中に蓄積される。アジサイはアルミニウムを吸収し、青色色素を生成する。装飾花には生殖機能や光合成機能がないため、アルミニウムを蓄積することで、葉が動物に食べられるのを防ぎ、光合成効率を高めている可能性が考えられる。


Powered by SOY CMS   ↑トップへ