ブログ内検索

micro:bitページ
とにかく速いブログサイトを目指す
検索キーワード:「GABA」
 

旨味成分のコハク酸

/** Geminiが自動生成した概要 **/
コハク酸は、貝類や日本酒に多く含まれる酸味と旨味を持つ有機化合物です。クエン酸回路の中間体として、生体内エネルギー産生に重要な役割を果たします。構造的には、2つのカルボキシ基を持つジカルボン酸で、クエン酸から数段階を経て生成されます。 旨味成分として知られるグルタミン酸は、コハク酸の前駆体であるα-ケトグルタル酸と関連しており、コハク酸もグルタミン酸に似た旨味を持つと考えられます。貝類に多く含まれる理由は、エネルギー代謝経路の違いや、浸透圧調整に関与している可能性などが考えられています。

 

ミカンに含まれる機能性成分

/** Geminiが自動生成した概要 **/
ミカンには、リラックス効果のあるGABAだけでなく、交感神経を興奮させる作用を持つシネフリンも含まれています。シネフリンは、アミノ酸のチロシンと似た構造を持つアルカロイドで、主にミカン科の果実に含まれています。 このように、ミカンは様々な物質を含み、単純に味が甘い、酸っぱいといったことだけでは判断できない複雑な果実と言えるでしょう。

 

ミカンの薄皮にある繊維状のものは欲しい成分が豊富に含まれている

/** Geminiが自動生成した概要 **/
ミカンの薄皮についている筋状の部分「アルベド」には、抗酸化作用のあるフラボノイドや、GABA、グルタミンといった成分が豊富に含まれています。これらの成分は、ミカンを搾汁してジュースにすると大幅に減少してしまいます。アルベドは苦味がありますが、健康のために残さず食べることをおすすめします。フラボノイドは体に良い影響を与える成分なので、積極的に摂取しましょう。

 

果実を絞ってジュースにすると見えてくる化学反応と物質の変化

/** Geminiが自動生成した概要 **/
ウンシュウミカンの成分は、甘さだけでなく、酸味や苦味など複雑に絡み合って美味しさを形成しており、糖度が高ければ美味しいわけではない。貯蔵したウンシュウミカンをジュースにすると、旨味成分であるグルタミン酸が減少し、塩味成分であるGABAが増加する。GABAの増加は塩味を感じさせ、相対的に甘味を増強させる効果がある可能性がある。つまり、貯蔵によってウンシュウミカンのジュースの味わいは変化する。

 

花粉症の発症の流れを整理してみる

/** Geminiが自動生成した概要 **/
## 乳酸菌が花粉症に効くってホント? 記事では、花粉症緩和にはIgEの産生抑制が有効で、乳酸菌、特に植物性乳酸菌がその可能性を秘めていると解説されています。 IgEはアレルギー反応を引き起こす抗体の一種で、花粉症ではこのIgEが過剰に作られることが問題です。乳酸菌、特に植物性のものは、発酵食品や飲料に含まれており、摂取することでIgEの産生を抑える効果が期待されています。 ただし、まだ研究段階であり、効果を保証するものではありません。今後のさらなる研究が期待されます。

 

イネのストレス応答を医薬品として活用

/** Geminiが自動生成した概要 **/
米ぬかに含まれるγ-オリザノールは、イネが高温ストレス時に蓄積する化合物で、抗炎症作用や脂肪蓄積改善効果を持つ医薬品としても利用されています。オリザノールはフェルラ酸とステロールから構成され、特にフェルラ酸は米ぬかの重要なフェノール性化合物です。フェルラ酸の合成経路が解明されれば、稲作全体の安定化に繋がる可能性も秘めています。

 

睡眠に作用するサプリメント

/** Geminiが自動生成した概要 **/
味の素の研究員が、本来は睡眠と無関係のアミノ酸の効能を検証する社内試験中に、対象食であるグリシンを摂取し忘れたため、夜にまとめて摂取したところ、睡眠時のいびきが減り、翌日の体調が良かったという妻の気づきから、グリシンの睡眠効果に注目が集まりました。 グリシンは抑制性の神経伝達物質で、体内時計の中枢に作用し深部体温を下げることで睡眠を促します。多くの栄養素と異なり、グリシンは脳に直接運搬されるため、睡眠サプリメントとして有効です。

 

睡眠に関するホルモンのメラトニンはどのように合成される?

/** Geminiが自動生成した概要 **/
睡眠ホルモン「メラトニン」は、体内時計を調整し、眠気を誘発する重要な役割を担います。その合成は、アミノ酸のトリプトファンからセロトニンを介して行われます。トリプトファンはチーズや卵、肉などに多く含まれるため、これらの食品を摂取することがメラトニン合成を促す可能性があります。さらに、メラトニンの合成は光の影響を受けるため、夜間は強い光を避けることが重要です。しかし、メラトニン合成は複雑なプロセスであるため、これらの要素だけで睡眠の質を保証できるわけではありません。

 

夏の風物詩の枝豆の続き

/** Geminiが自動生成した概要 **/
枝豆はダイズよりもカリウムやカロテノイドを多く含み、土壌からの養分持ち出しが多い可能性がある。ダイズ栽培では土壌の物理性を高めるためサブソイラがよく使われるが、金属系養分の損失が懸念される。特に家畜糞による土作りは金属系要素の酸化を加速させ、土壌劣化につながる可能性がある。枝豆は栄養価が高く、猛暑日が増える中で重要な食材となる可能性がある一方、土壌劣化による品質低下が懸念される。持続可能な枝豆栽培には、土壌への負荷を軽減する対策が不可欠である。

 

トマトの栄養価から施肥を考える

/** Geminiが自動生成した概要 **/
トマトの栄養価に着目し、グルタミン酸による防御反応の活用で減農薬栽培の可能性を探る記事です。トマトには糖、リコピン、リノール酸、グルタミン酸が含まれ、特にグルタミン酸は植物の防御機構を活性化させます。シロイヌナズナではグルタミン酸投与で虫害に対する防御反応が見られ、トマトにも応用できる可能性があります。黒糖肥料の葉面散布によるグルタミン酸供給で、虫害を減らし光合成効率を高め、果実品質向上と農薬削減が期待できます。グルタミン酸は人体ではGABA生成に関与する旨味成分でもあります。ケイ素施用による効果検証記事へのリンクもあります。

 

ブナシメジに豊富に含まれる成分を知りたい

/** Geminiが自動生成した概要 **/
ブナシメジの栄養価に着目し、特に豊富に含まれる成分について検証しています。抗酸化作用は他のキノコと比べて低いものの、カリウム、オルニチン、GABAが豊富です。オルニチンは解毒作用、GABAは免疫向上効果があるとされ、風邪予防にも効果が期待されます。ブナシメジはブナなどの広葉樹の朽木に群生する木材腐朽菌です。ホクトの研究によると、ブナシメジは生シイタケと比較してもこれらの成分が多く含まれています。ただし、エノキダケとの比較データは不足しており、今後の課題となっています。

 

シイタケの旨味成分のグアニル酸

/** Geminiが自動生成した概要 **/
シイタケの旨味成分であるグアニル酸は、グアノシン一リン酸 (GMP) で、核酸の一種。GMPはリン酸化されるとDNA構成要素のGTPとなり、生体にとって重要。さらにGTPはグアニル酸シクラーゼにより環状グアノシン一リン酸 (cGMP) に変換される。cGMPは血管拡張作用などに関与し、人体にとって重要な役割を果たす。シイタケ摂取とcGMP生成の関連は不明だが、cGMPの重要性を理解しておくことは有益。グアニル酸は旨味成分であるだけでなく、生体機能の重要な要素にも関わっている。

 

ベニテングダケの毒性

/** Geminiが自動生成した概要 **/
ベニテングダケの毒性は、イボテン酸とムッシモールという成分による。イボテン酸は乾燥すると脱炭酸反応を起こし、ムッシモールへと変化する。ムッシモールは神経伝達物質GABAの作動薬として働き、GABAの機能を抑制することで痙攣などの症状を引き起こす。イボテン酸自体は旨味成分であり、ベニテングダケは美味しいという報告もある。

 

花蜜にサポニンを含む花を咲かせる木があるらしい

/** Geminiが自動生成した概要 **/
花蜜と花粉は、ミツバチにとって主要な栄養源であり、糖類、アミノ酸、脂質、ビタミン、ミネラル、ポリフェノール類など様々な成分を含む。特にポリフェノール類のフラボノイドは、植物の色素や香りの元となるだけでなく、抗酸化作用や抗菌作用など様々な生理活性を示す。花蜜にはショ糖、果糖、ブドウ糖などの糖類が主成分で、その他に少量のアミノ酸、ビタミン、ミネラルなどが含まれる。花粉は、タンパク質、脂質、ビタミン、ミネラルが豊富で、ミツバチの幼虫の成長に不可欠な栄養源となる。これらの成分は植物の種類や生育環境、季節などによって変化し、ハチミツの風味や特性に影響を与える。

 

運動と免疫

/** Geminiが自動生成した概要 **/
秀品率向上には、植物の生育に必須な微量要素である亜鉛の適切な供給が新たな課題となっている。亜鉛欠乏は生育不良や収量低下を引き起こすため、土壌診断に基づいた施肥設計が重要だが、土壌への亜鉛供給だけでは植物への吸収効率が悪く、効果的な対策とは言い難い。葉面散布も有効だが、散布時期や濃度、製剤の違いによって効果にばらつきが生じる。そこで注目されているのが、キレート剤を用いた亜鉛供給や、光合成細菌などの微生物を利用した吸収促進技術である。これらの技術により、植物体内の亜鉛濃度を高め、秀品率向上に繋げる試みが進められている。しかし、最適な施用方法やコスト面など、実用化に向けた更なる研究開発が必要とされている。

 

糠漬けの中にGABAはあるか?

/** Geminiが自動生成した概要 **/
免疫向上に重要な亜鉛は、免疫細胞の活性化や抗体産生に不可欠。しかし、現代人は慢性的な亜鉛不足に陥りやすい。亜鉛の摂取源として、牡蠣や牛肉、チーズなどが挙げられるが、糠にも豊富に含まれている。糠漬けは発酵食品でもあり、GABAの産生も期待できるため、免疫向上に役立つ可能性がある。GABAは塩味成分であり、減塩にも繋がる。さらに、糠には銅も含まれ、亜鉛と銅は協調して免疫機能をサポートする。よって、糠漬けは亜鉛、銅、GABAを同時に摂取できる優れた食品と言える。

 

味噌の中にGABAはあるか?

/** Geminiが自動生成した概要 **/
GABAを多く含む食品を探している著者は、味噌に着目するも、一般的な味噌は塩分濃度が高いためGABA生成菌が生育できず、GABA含有量は低いと知る。GABAを含む味噌が将来的に市販される可能性は示唆されているものの、現状ではGABA摂取源としては不向き。茶葉や玄米の発酵/発芽でGABAが増える例もあることから、他の発酵食品、特にすぐき、キムチ、ぬか漬けにGABAが含まれる可能性を考察し、味噌とぬか漬けの塩分濃度の比較に言及している。

 

GABAが獲得免疫に与える影響を探る

/** Geminiが自動生成した概要 **/
ストレスによる免疫低下のメカニズムとGABAの影響についての記事です。ストレスは細胞性免疫を低下させ、体液性免疫の過剰を引き起こしアレルギーにつながる可能性があります。GABAの摂取はストレス軽減に効果があり、不安を示す脳波を下げ、リラックス時の脳波を上げるという研究結果があります。さらに、唾液中のIgA量にも影響を与えることが示唆されています。GABAは細胞内のpH調整にも関与し、恒常性維持に貢献します。味噌などの発酵食品や乳酸菌飲料との関連性も示唆されており、免疫向上におけるGABAの役割について考察が深まっています。

 

ストレスは免疫の何が低下するのか?

/** Geminiが自動生成した概要 **/
ストレスは交感神経を活性化し、カテコラミン分泌を促す。カテコラミンはT細胞(細胞性免疫)を抑制するため、ウイルス感染への抵抗力が低下する。睡眠不足も交感神経優位につながるため、免疫力低下の原因となる。一方、GABAは神経細胞に抑制的に働き、睡眠の質向上に繋がる。つまりGABA摂取は交感神経の鎮静化を促し、結果的に細胞性免疫の抑制を軽減、ウイルスへの抵抗力維持に貢献する可能性がある。

 

免疫の向上にはグルタチオンが重要な役割を担っているはず

/** Geminiが自動生成した概要 **/
野菜の旨味成分としてGABAが注目されている。GABAは抑制性の神経伝達物質で、リラックス効果や血圧低下作用などが知られている。グルタミン酸脱炭酸酵素(GAD)によってグルタミン酸から変換されるGABAは、トマトや発芽玄米などに多く含まれる。特にトマトでは、成熟過程でGABA含有量が急増する品種も開発されている。茶葉にもGABAが多く含まれ、旨味成分として機能している。GABAは加工食品にも応用されており、GABA含有量を高めた醤油などが販売されている。健康効果と旨味成分としての両面から、GABAは食品分野で重要な役割を担っている。

 

人の神経と昆虫の神経

/** Geminiが自動生成した概要 **/
殺虫剤は昆虫の神経系に作用するものが多く、アセチルコリン、GABA以外にもグルタミン酸、グリシン、オクトパミン、チラミンなどが神経伝達物質として利用されている。昆虫と脊椎動物では神経伝達物質の役割が異なり、例えば昆虫の体制筋ではグルタミン酸が、脊椎動物ではアセチルコリンが使われている。ハチはグルタミン酸の前駆体であるプロリンを蓄えるが、これは体制筋の迅速な活動に関連している可能性がある。

 

フルキサメタミドの作用機構

/** Geminiが自動生成した概要 **/
フルキサメタミドは、昆虫の神経伝達物質GABAの働きを阻害することで殺虫効果を発揮する。昆虫はGABA作動性クロライドイオンチャンネルを通じて神経の興奮を抑制するが、フルキサメタミドはこのチャンネルを阻害し、過剰な興奮を引き起こす。一方、ヒトを含む脊椎動物ではGABAの作用機序が異なり、このチャンネルを持たないため、フルキサメタミドは昆虫選択的に作用する。有機リン系殺虫剤とは異なる作用機序のため、耐性昆虫にも効果的。GABAは野菜の旨味成分としても知られるが、フルキサメタミドの作用は昆虫の神経系に特異的であるため、人体への影響は少ないと考えられる。

 

野菜の美味しさとは何だろう?ポリフェノールと食物繊維

/** Geminiが自動生成した概要 **/
この記事では、野菜のおいしさについて、筆者の師匠が育てたゴボウを例に考察しています。師のゴボウは太く、味だけでなく香りも素晴らしかったとのこと。ゴボウの旨味成分としてグルタミン酸が挙げられますが、それ以外にクロロゲン酸とイヌリンの存在が重要だと指摘します。クロロゲン酸はポリフェノールの一種で、少量であれば甘味や酸味を感じさせ、味覚を修飾する効果があります。イヌリンは水溶性食物繊維で、加水分解されるとオリゴ糖になり、ゴボウの甘味を増します。また、整腸作用も持つとされています。長期冷蔵によってイヌリンが糖化し甘味が増したゴボウに、クロロゲン酸の味覚修飾効果とグルタミン酸の旨味が加わり、独特の風味とコクが生まれると結論づけています。さらに、優れた栽培者のゴボウは香りも優れていることを指摘し、おいしさの多様性を示唆しています。

 

野菜の美味しさとは何だろう?亜鉛

/** Geminiが自動生成した概要 **/
亜鉛は味覚障害を防ぐ重要なミネラルで、味蕾細胞の生成に不可欠。牡蠣などの動物性食品だけでなく、大豆にも豊富に含まれる。生大豆では吸収率が低いものの、味噌などの大豆発酵食品ではフィチン酸が分解されるため吸収率が向上する。フィチン酸は亜鉛の吸収を阻害する有機酸である。大豆は味覚増強効果に加え、味覚感受性にも良い影響を与える。野菜の美味しさは健康に繋がるという仮説を補強する。さらに、健康社会実現のためには、亜鉛を吸収できる土壌環境の維持、つまり土壌劣化を防ぐことも重要となる。

 

野菜の美味しさとは何だろう?カリウム

/** Geminiが自動生成した概要 **/
カリウムは土壌に豊富とされるが、劣化した土壌では不足しやすく、野菜の生育不良や味に影響する。カボチャの果実内発芽はカリウム不足の一例で、味が落ちる。研究によると、塩化カリウムは塩味を増強する効果があり、野菜のカリウム含有量と美味しさの関連性が示唆される。美味しい野菜は、土壌劣化のない畑で育ち、カリウムが豊富に含まれている。人体ではカリウムが塩分排出を促すため、美味しい野菜は健康にも良いと言える。つまり、「野菜の美味しさ=健康」という仮説が有力となる。土壌管理の重要性も強調されている。

 

野菜の美味しさとは何だろう?オルニチン

/** Geminiが自動生成した概要 **/
畑作継続の難しさは、地力維持の困難さに起因する。特に窒素、リン酸、カリは収穫物と共に持ち去られ、土壌から急速に枯渇する。化学肥料で補う方法もあるが、土壌の劣化や環境問題を引き起こす可能性がある。持続可能な農業のためには、有機物施用や輪作が重要となる。緑肥や堆肥は土壌構造を改善し、微生物活動を活性化させることで養分供給力を高める。輪作は特定養分の過剰な消費を防ぎ、病害虫発生も抑制する。しかし、有機農業は手間と時間が必要で、収量も低下する場合がある。土壌診断に基づいた適切な管理と、地域特性に合わせた栽培方法の選択が、長期的な畑作継続には不可欠である。

 

野菜の美味しさとは何だろう?GABA

/** Geminiが自動生成した概要 **/
だだちゃ豆の美味しさの秘密を探る中で、GABAの役割が注目されている。だだちゃ豆は他の枝豆に比べ、オルニチン、GABA、アラニンといった旨味や甘味に関わるアミノ酸が豊富に含まれている。特にGABAは味蕾細胞内の受容体を刺激し、塩味を感じさせる可能性があるという。これは、少量の塩味が甘味や旨味を増強する現象と同様に、GABAも他の味覚を増強する効果を持つことを示唆している。GABAはグルタミン酸から合成されるため、旨味を持つグルタミン酸との相乗効果も期待できる。GABAの豊富な野菜は、減塩調理にも役立ち、健康的な食生活に繋がる可能性を秘めている。アミノ酸肥料による食味向上も期待され、野菜の美味しさは健康に繋がるという仮説を裏付ける重要な要素となっている。

 

お茶の味を決める3種の要素

/** Geminiが自動生成した概要 **/
お茶の味は、カテキン(渋味・苦味)、テアニン(旨味)、カフェイン(苦味)の3要素で決まる。カテキンはタンニンの一種で、テアニンは旨味成分グルタミン酸の前駆体であり、リラックス効果も示唆されている。カフェインは覚醒作用で知られる。良質な茶葉はこれらのバランスが良く、淹れ方によって各成分の抽出を調整し、自分好みの味にできる。それぞれの抽出条件については、参考文献で詳しく解説されている。

 

植物にとってビタミンB6とは?の続き

/** Geminiが自動生成した概要 **/
植物にとってビタミンB6、特に活性型であるピリドキサールリン酸(PLP)は、紫外線ストレスへの防御に重要な役割を果たす。PLPはシステインとヘムの生合成に関与し、これらは抗酸化酵素(グルタチオンペルオキシダーゼ、アスコルビン酸ペルオキシダーゼ、カタラーゼ)の構成要素となる。これらの酵素は紫外線によって生成される活性酸素の除去に働く。さらにPLP自体も活性酸素と反応する。また、PLPはグルタミン酸からGABAへの変換にも関与する。システインやヘムは他の代謝経路でも重要であるため、ビタミンB6は紫外線耐性以外にも様々な機能を持つと考えられる。

 

糠漬けの栄養に迫る

/** Geminiが自動生成した概要 **/
糠漬けは、野菜に米ぬかの栄養が移行することで栄養価が高まる。特に糠に豊富なビタミンB1は、糠漬けによって野菜に取り込まれる。漬物体験をきっかけに、糠漬けの栄養に着目し、ビタミンB1の由来やGABAの増加といった点について考察している。GABAは乳酸菌がグルタミン酸から生成するpH調整の産物と考えられる。ビタミンB1は米ぬかから抽出されたオリザニンであり、糠漬けで摂取できる。

 

夏に活躍!C4回路の植物たち

/** Geminiが自動生成した概要 **/
C4型光合成は、高温乾燥環境に適応した光合成の仕組みである。通常のC3型光合成では、高温時に気孔を閉じ二酸化炭素の取り込みが制限されるため光合成速度が低下する。しかしC4植物は、葉肉細胞で二酸化炭素を濃縮し、維管束鞘細胞でカルビン回路を行うことで、高温時でも効率的に光合成を行う。二酸化炭素濃縮にはエネルギーが必要となるため、低温・弱光下ではC3植物より効率が落ちる。トウモロコシやサトウキビなどがC4植物の代表例である。

 

納豆のネバネバ、再考

/** Geminiが自動生成した概要 **/
この記事では、納豆のネバネバ成分であるポリグルタミン酸の合成について考察しています。筆者は当初、大豆にグリシンが多く含まれることから、納豆菌はグリシンからグルタミン酸を容易に合成し、ポリグルタミン酸を作ると考えていました。しかし、グリシンからグルタミン酸への代謝経路は複雑で、ピルビン酸からクエン酸回路に入り、ケトグルタル酸を経てグルタミン酸が合成されることを説明しています。つまり、大豆のグリシンから直接グルタミン酸が作られるわけではないため、納豆菌はポリグルタミン酸を作るのに多くのエネルギーを費やしていることが示唆されます。このことから、筆者は納豆菌の働きを改めて認識し、納豆の発酵過程への愛着を深めています。さらに、人間がポリグルタミン酸を分解できるかという疑問を提起し、もし分解できるなら納豆のネバネバはグルタミン酸の旨味に変わるため、納豆は強い旨味を持つと推測しています。

 

葉物野菜は寒さに触れて甘くなる

/** Geminiが自動生成した概要 **/
スクロースは、グルコースとフルクトースがグリコシド結合した二糖類で、砂糖の主成分。植物では光合成産物として葉で合成され、師管を通って貯蔵器官や成長部位へ輸送される。ショ糖とも呼ばれる。非還元糖であり、変旋光を示さない。水への溶解度は高く、甘味料として広く利用される他、保湿剤や医薬品添加物としても使用される。加水分解によりグルコースとフルクトースになり、転化糖と呼ばれる。スクロースは、生物にとって重要なエネルギー源であり、植物の成長や代謝に不可欠な役割を果たす。

 

二年ものの味噌を買った

/** Geminiが自動生成した概要 **/
二年熟成味噌を購入し、一年味噌との味の違いを考察している。熟成が進むと大豆タンパク質がペプチドを経てアミノ酸に分解され、甘味が増す。特に大豆の学名(Glycine max)からグリシンが豊富と推測し、グリシンが甘味を持つアミノ酸であることから、二年味噌の甘味の強さは理にかなっていると結論づけている。また、安価な味噌は脱脂大豆を使用するため風味が劣るという情報や、大豆に含まれる油分が味噌のまろやかさに貢献していることにも触れている。さらに、味噌の熟成と発酵食品としての特性、無添加味噌のカビについても言及している。

 

ホルモンのように作用するペプチド、システミン

/** Geminiが自動生成した概要 **/
植物の免疫機構において、ペプチドの一種であるシステミンがホルモン様の役割を果たす。傷害を受けた植物はシステミンを合成し、他の器官へ輸送する。システミンを受容した細胞は防御ホルモンであるジャスモン酸を合成し、殺傷菌に対する防御応答を開始する。これは、生きた細胞に寄生する菌に対するサリチル酸とは異なる機構である。システミンや防御タンパク質の合成にはアミノ酸が利用され、ジャスモン酸合成にもアミノ酸から作られる酵素が関与するため、植物の免疫においてアミノ酸は重要な役割を担っていると言える。

 

酸性土壌で生きる植物たち

/** Geminiが自動生成した概要 **/
酸性土壌で問題となるアルミニウム毒性に対し、植物は様々な耐性機構を持つ。岡山大学の研究では、コムギがリンゴ酸輸送体(ALMT)を用いてリンゴ酸を分泌し、アルミニウムをキレート化することで無毒化していることを示している。しかし、全ての植物が同じ機構を持つわけではない。Nature Geneticsに掲載された研究では、ソルガムがクエン酸排出輸送体(MATE)を用いてクエン酸を分泌し、アルミニウムを無毒化していることが明らかになった。このクエン酸によるアルミニウム無毒化は、ソルガムの酸性土壌への適応に大きく貢献していると考えられる。この知見は、酸性土壌での作物栽培に役立つ可能性がある。

 

グルタミン酸を前駆体とするGABA

/** Geminiが自動生成した概要 **/
植物体内では、グルタミン酸からGABA(γ-アミノ酪酸)が合成される。GABAは細胞内pHの調節、浸透圧調節、防御物質、シグナル物質など様々な機能を持つ。グルタミン酸からGABAへの変換はプロトン消費反応であるため、細胞質の酸性化時にGABA生成が促進され、pHが上昇する。グルタミン酸は酸性アミノ酸だが、GABAは側鎖のカルボニル基が脱炭酸により除去されるため酸性ではなくなる。この反応とプロトンの消費により細胞内pHが上昇する。GABA生成は細胞内pHの調整機構として機能している。

 

乳酸菌の活性に迫る

/** Geminiが自動生成した概要 **/
この記事では、乳酸菌がγ-アミノ酪酸(GABA)を生成するメカニズムと、その生理活性について解説しています。千枚漬けからGABA高生産性乳酸菌が発見され、グルタミン酸ナトリウム存在下でGABAを大量に生成することが示されました。GABAはグルタミン酸デカルボキシラーゼ(GAD)によりグルタミン酸から合成され、この酵素はビタミンB6の活性型を補酵素として利用します。GADは人体にも存在し、神経伝達物質としてGABAが機能しています。食品中のGABAはリラックス効果を期待して添加される例が増えており、糠漬けにも含まれる可能性があります。GABAがそのまま神経に到達するかは不明ですが、前駆体であるグルタミン酸は旨味成分として重要です。乳酸菌自身にとってGABAがどのような役割を果たしているかは、今後の研究課題となっています。


Powered by SOY CMS   ↑トップへ