ブログ内検索

プログラミング教材開発
大阪府高槻市原地区で肥料教室を開いています
検索キーワード:「硫化鉄」
 

有機態硫黄とは?

/** Geminiが自動生成した概要 **/
黒色土は硫黄保持力が高く、特に有機態硫黄の保持に優れています。有機態硫黄は、チロシンなどの芳香族アミノ酸と硫酸イオンがエステル結合したフェノール酸スルファートのような形で存在し、土壌中のプラス電荷と結合したり腐植酸に取り込まれたりしています。 しかし、誰が硫酸エステルを合成するのか、それが植物にとって利用しやすい形態なのかは、まだ解明されていません。今後の研究が待たれます。

 

愚者の金

/** Geminiが自動生成した概要 **/
日本の土壌では、火山活動の影響で硫黄を含む黄鉄鉱が多く存在するため、硫黄欠乏は起こりにくいとされています。黄鉄鉱は金色の鉱物で、水田の秋落ち現象にも関わっています。土壌中に含まれる黄鉄鉱は、酸化により鉄と硫酸に分解され、植物に硫黄を供給します。そのため、頻繁な土壌交換を行わない限り、硫黄不足の心配はほとんどないと言えるでしょう。

 

稲作のごま葉枯病は土壌劣化に因るものだと考えるとしっくりくる

/** Geminiが自動生成した概要 **/
この地域で稲作にごま葉枯病が多発している原因は、土壌劣化によるカリウム、ケイ酸、マグネシウム、鉄などの要素の欠乏が考えられます。特に鉄欠乏は土壌の物理性悪化による根の酸素不足が原因となり、硫化水素発生による根腐れも懸念されます。慣行農法では土壌改善が行われないため、根本的な解決には土壌の物理性向上と、それに合わせた適切な施肥管理が必須です。経験的な対処法や欠乏症の穴埋め的な施肥では効果が期待できません。

 

耕起で団粒構造の一部を壊すと言うけれど

/** Geminiが自動生成した概要 **/
ブログ記事「耕起で団粒構造の一部を壊すと言うけれど」は、耕起が土の団粒構造を損なうメカニズムを考察しています。物理的な破壊に加え、土中の化学変化に着目。耕起による急激な酸素増加で有機物が分解され有機酸が生じるが、その影響は限定的と推測しています。 重要な点として、硫酸塩系の肥料を施用し硫化鉄が蓄積した畑で、耕起によって硫化鉄が酸化され強酸である硫酸が発生する可能性を指摘。この硫酸が粘土鉱物と腐植酸の結合を断ち切り、団粒構造を破壊する主な要因ではないかと考察。土壌の状態と施肥履歴が、耕起による土壌構造への影響を大きく左右することを示唆しています。

 

粘土鉱物が出来る場所、海底風化

/** Geminiが自動生成した概要 **/
海底風化は、海水や底生生物の作用で海底の岩石や堆積物が変化する現象です。この過程で、粘土鉱物は海水中からカリウムやマグネシウムを取り込み、硫酸イオンも貯め込みます。海底で形成された粘土が隆起すると、硫化鉄が反応して酸性を示すようになり、粘土層が土化した際にミネラルが少なくなる可能性があります。この情報は、粘土鉱物系の肥料の性質を理解する上で重要です。

 

栽培開始前に土壌に十分量の鉄が入っているか?

/** Geminiが自動生成した概要 **/
ベントナイト系肥料に含まれる鉄分がネギ栽培に十分かどうかを検証した結果、十分量以上であることがわかった。ベントナイトに含まれる黄鉄鉱の鉄含有量を0.2%と仮定し、200kg/反を施用すると400gの鉄が供給される。一方、ネギ1本(150g)あたりの鉄分含有量は1.8mgなので、50,000本植えた場合の持ち出し量は90gとなる。つまり、ベントナイト中の鉄分だけでネギの鉄分要求量を十分に満たせる。ただし、鉄分豊富な母岩地帯では、川の水から供給される鉄分も考慮し、過剰症に注意が必要となる。

 

鉱物は栽培上の問題の解決案を教えてくれる

/** Geminiが自動生成した概要 **/
牛糞堆肥は土壌改良に有効とされるが、窒素過多による生育阻害、雑草種子混入、病害虫リスク、臭気問題などデメリットも多い。特に老朽化水田のような硫化鉄(II)を含む土壌では、牛糞堆肥の窒素により硫化水素が発生し、根腐れを引き起こす可能性がある。さらに、牛糞堆肥の分解過程で生成されるアンモニアは土壌pHを一時的に上昇させ、硫化水素発生を促進する。したがって、老朽化水田の改良には牛糞堆肥ではなく、腐植酸やミネラル豊富な堆肥を選択するべきである。

 

土質の理解を求め川の上流へ

/** Geminiが自動生成した概要 **/
山を構成する岩石は、風化・侵食によって細粒化し、最終的に粘土になる。花崗岩は風化に弱く、構成鉱物の剥離によって真砂土と呼ばれる粗い砂状になる。これがさらに風化すると、様々な鉱物が含まれた粘土へと変化する。堆積岩である頁岩は、粘土が固まったものだが、これも風化によって再び粘土に戻る。つまり、岩石の種類に関わらず、風化・侵食の過程で粘土へと変化していく。風化の進行度合いにより、様々な粒度の土壌が存在するが、最終的には粘土にたどり着く。この粘土は栄養豊富なため、植物の生育を支える重要な役割を果たす。

 

酸が金属を溶かす

/** Geminiが自動生成した概要 **/
酸は水素イオン(H+)を放出し、金属と反応する。金属の電子を奪う水素イオンは酸化剤として働き、電子を失った金属は酸化されてイオン化する。例えば、鉄と塩酸の反応では、鉄は電子を奪われ鉄イオン(Fe2+)になり、水素イオンは電子を受け取って水素ガス(H2)となる。鉄イオンは塩酸中の塩化物イオン(Cl-)と結合し、塩化鉄(FeCl2)を生成する。 この反応は、硫化水素(H2S)と鉄の反応にも見られる。硫化水素も酸性を示し、鉄から電子を奪い硫化鉄を生成する。肥料のpHは土壌への影響を及ぼすため、NPKだけでなく酸性度にも注意が必要である。生理的酸性肥料や肥料成分偽装の問題も、土壌の酸性化に繋がる可能性があるため、理解しておくことが重要。

 

老朽化水田は文字通り泥沼

/** Geminiが自動生成した概要 **/
老朽化水田では、硫酸石灰の還元により硫化水素が発生し、悪臭と土壌への悪影響を引き起こす。微生物は二価鉄(Fe²⁺)と硫化水素を反応させ硫化鉄(FeS)として無毒化するが、この過程で土壌中の鉄が不足する。鉄不足は作物への悪影響だけでなく、土壌の弾力性を失わせ、作業性と収量を低下させる。結果として、耕作放棄に至る可能性がある。解決策は提示されていないが、土壌改良が必要であることが示唆されている。

おすすめの検索キーワード
おすすめの記事

Powered by SOY CMS   ↑トップへ