ブログ内検索

micro:bitページ
とにかく速いブログサイトを目指す

カテゴリー : 地形・地質/page-6

 

イネがシリカを吸収すると

/** Geminiが自動生成した概要 **/
イネのシリカ吸収は、倒伏防止、害虫忌避、病害耐性向上、リン酸吸収効率化、受光態勢改善など多くの利点をもたらす。ケイ酸はイネの組織を強化し、光合成を促進する。玄武岩質地質でも良質な米が収穫されることから、植物が吸収する「シリカ」は二酸化ケイ素ではなく、かんらん石等の可能性が示唆される。肥料としてシリカを与える場合は、グリーンタフ由来の粘土鉱物が有効。グリーンタフは火山灰が堆積したもので、モンモリロナイトなどの粘土鉱物を豊富に含む。

 

植物はどのようにしてシリカを吸収するか?

/** Geminiが自動生成した概要 **/
植物は土壌中からケイ酸を吸収し、強度を高める。吸収の形態はSi(OH)4で、これはオルトケイ酸(H4SiO4)が溶解した形である。オルトケイ酸はかんらん石などの鉱物に含まれ、苦鉄質地質の地域ではイネの倒伏が少ない事例と関連付けられる。一方、二酸化ケイ素(シリカ)の溶解による吸収は限定的と考えられる。ケイ酸塩からの吸収は、酸による反応が推測されるが、詳細は不明。可溶性ケイ酸はアルミニウム障害も軽減する効果を持つ。つまり、イネのケイ酸吸収は、土壌中の鉱物組成、特にかんらん石の存在と関連し、可溶性ケイ酸の形で吸収されることで、植物の強度向上に寄与する。

 

植物が利用できるシリカはどこにある?

/** Geminiが自動生成した概要 **/
あそこの畑がカリ不足している理由を、土壌中のカリウムの形態に着目して解説している。日本の土壌はカリウム含有量が多いと言われるが、それはカリ長石などの形で存在しており、植物が直接利用できる形態ではない。植物が利用できるのは土壌溶液中のカリウムイオンだが、その量は土壌全体の数%に過ぎない。土壌溶液中のカリウムイオンが不足すると、植物はカリウム欠乏症を起こし、収量低下や品質劣化につながる。したがって、土壌中のカリウム総量ではなく、実際に植物が利用できる形態のカリウム量を把握することが重要である。

 

台風でも倒伏しないイネ

/** Geminiが自動生成した概要 **/
長野県栄村小滝集落では、特別な農法により高品質な米が栽培され、台風による倒伏被害もほとんど見られなかった。倒伏した一部の水田と健全な水田の違いは、赤い粘土の客土の有無であった。イネの倒伏耐性向上に有効とされるシリカに着目すると、赤い粘土に含まれる頑火輝石やかんらん石などの鉱物がケイ酸供給源となる可能性がある。これらの鉱物は玄武岩質岩石に多く含まれ、二価鉄やマグネシウムも豊富に含むため、光合成促進にも寄与すると考えられる。赤い粘土に含まれる成分が、米の品質向上と倒伏耐性の鍵を握っていると考えられるため、イネとシリカの関係性について更なる調査が必要である。ただし、玄武岩質土壌はカリウムが少なく、鉄吸収が阻害されると秋落ちが発生しやすい点に注意が必要。

 

黒ボク土は栽培しにくい土なのか?再考

/** Geminiが自動生成した概要 **/
黒ボク土は排水性、保肥力が高く、土が固くなりにくい利点を持つ一方で、活性アルミナが出やすく、養分を溜め込みやすく、pHが低くなりやすいとされる。しかし、活性アルミナは腐植で対処可能で、養分の蓄積は減肥で、pH低下は良質な肥料で解決できる。つまり、黒ボク土の欠点は適切な管理で克服できるため、栽培しにくい土ではないと言える。むしろ、これらの特性を理解し適切に対処すれば、高塩ストレスを回避し秀品率向上に繋がる。黒ボク土へのネガティブなイメージは、黒ボク土中心の技術書が原因であり、他の土壌と比較すれば、黒ボク土の利点の多さが際立つ。

 

鉱物の風化と植物の死が石を土へと変える

/** Geminiが自動生成した概要 **/
岩石が風化して粘土鉱物となり、更に植物の死骸が分解された腐植と結合することで、植物にとって良好な土壌環境が形成される。腐植と粘土鉱物は互いに分解を防ぎ合い安定した状態を保ち、作物の生育を促進する。植物のリグニンは、植物体を固くする役割を持つと同時に、分解されて土壌中で鉱物と馴染み、土壌改良に貢献する。この自然界の精巧なメカニズムは、偶然か必然かは不明だが、絶妙なバランスの上に成り立っており、このバランスが崩れると土壌環境は容易に変化する。腐植と粘土鉱物の結合、リグニンの分解による土壌改良効果など、自然界の巧妙な仕組みが土壌の肥沃度を高めている。

 

同型置換で粘土鉱物の持つ保肥力を高める

/** Geminiが自動生成した概要 **/
粘土鉱物の保肥力向上に寄与する同型置換について解説。Si四面体やAl八面体構造において、Si⁴⁺がAl³⁺、Al³⁺がMg²⁺などに置換されることで、全体が負に帯電する。この負電荷が養分を引き付けるため、保肥力が高まる。置換されたAl³⁺は水と反応し、水酸化アルミニウムAl(OH)₃とH⁺を生成する。この水酸化アルミニウムは、正長石からカオリナイト(1:1型)が形成される過程にも関与する。同型置換は粘土鉱物の風化過程で発生し、2:1型から1:1型への変質にも関連している。

 

粘土鉱物の構造

/** Geminiが自動生成した概要 **/
粘土鉱物はSiO四面体とAl八面体の組み合わせで、1:1型(カオリナイト等)と2:1型(モンモリロナイト等)がある。層間の水(層間水)の広さが保肥力(CEC)に関係し、モンモリロナイトの方がCECが高い。SiO四面体は珪素(Si)を中心とした四面体構造、Al八面体はアルミニウム(Al)を中心とした八面体構造で、これらが層状に重なって粘土鉱物を形成する。粘土質土壌でも、粘土鉱物の種類によって保肥力は異なるため、期待する効果が得られない場合もある。

 

石由来の保肥力

/** Geminiが自動生成した概要 **/
土壌の保肥力について、石の構造と風化による影響に着目した考察。鉱物の同型置換と破壊原子価による保肥力の仕組みを説明し、大鹿村の中央構造線露頭見学で得た知見を紹介。学芸員との会話から、玄武岩質の土壌と泥岩質の土壌の特性比較、特に泥岩に含まれる太古の有機物由来の肥沃性への期待が示唆される。堆積岩である泥岩の形成過程を解説し、風化によって砂、粘土、有機物が含まれる泥岩が、土壌への有効な有機物を供給する可能性について考察している。関連として、泥炭土や客土の話題にも言及。

 

粘土鉱物を理解する旅3

/** Geminiが自動生成した概要 **/
ブルカノ式火山の火山灰土壌は、輝石や角閃石といった造岩鉱物を多く含み、植物の生育に有利な性質を持つ。これらの鉱物は風化速度が速いため、カリウムやマグネシウム、カルシウム、鉄などの植物必須元素を供給する。また、風化過程で粘土鉱物が生成され、保水性や保肥性を向上させる。ただし、リン酸固定能が高いため、リン酸肥料の施用には注意が必要となる。さらに、火山性土壌特有の軽石や火山礫は、土壌の通気性や排水性を高める効果がある。これらの特性から、ブルカノ式火山由来の土壌は、適切な管理を行うことで高い生産性を持つ農地となる可能性を秘めている。

 

粘土鉱物を理解する旅2

/** Geminiが自動生成した概要 **/
粘土鉱物の理解を深めるため、各地のジオパークや博物館で得た情報をもとに、土壌における役割を考察している。地震や火山活動により長石などのアルミノ珪酸塩が粘土鉱物に変質する過程に着目し、図鑑で長石の種類や変質経路を調べた。温泉のpH変化と粘土鉱物の関係、黒ボク土のアロフェンと非アロフェンの起源にも触れ、どちらもアルミノ珪酸塩の二次鉱物であることを指摘。最終的に、アルミノ珪酸塩の分布と火成岩の関係へと議論を展開する。

 

粘土鉱物を理解する旅

/** Geminiが自動生成した概要 **/
筆者は、土の成り立ち、特に粘土鉱物について深く知りたいと考えています。土壌学では粘土鉱物の性質について学びましたが、生成過程や分布など、鉱物としての視点からの情報が不足していました。そこで、各地のジオパークや博物館を訪れ、地質や岩石について学びを深めてきました。その過程で、粘土鉱物が珪酸塩鉱物、特にテクトケイ酸塩と関連性が深いことを知り、さらなる探求を続けています。

 

太古の生物は酸素によって現れた銅を活用した

/** Geminiが自動生成した概要 **/
ボルドー液は、硫酸銅と消石灰を混ぜて作る殺菌剤で、19世紀末にフランスのボルドー地方でブドウのべと病対策として開発されました。銅イオン(Cu²⁺)は殺菌効果を持ちますが、植物にも有害です。そこで、消石灰を加えて水酸化銅(II)を生成し、銅イオンの溶出速度を調整することで、植物への毒性を抑えつつ殺菌効果を発揮します。ボルドー液は、現在でも有機農法で広く利用されている、歴史ある銅製剤です。銅の結合力の強さは諸刃の剣であり、生物にとって必須であると同時に過剰になると有害となるため、その微妙なバランスが重要です。

 

客土で川砂を入れる意義再び

/** Geminiが自動生成した概要 **/
大鹿村の中央構造線安康露頭では、日本列島を東西に分ける大断層である中央構造線の露頭を見ることができる。ここでは、内帯の領家変成帯と外帯の三波川変成帯が接しており、異なる時代の地層が押し付け合う様子が観察できる。領家変成帯は高温低圧型変成岩で構成され、花崗岩などがみられる。一方、三波川変成帯は低温高圧型変成岩で、緑色片岩や青色片岩などが特徴的。この露頭は、地質学的に重要なだけでなく、断層活動による地殻変動を理解する上で貴重な場所となっている。

 

高アルカリ性の温泉から土を考える

/** Geminiが自動生成した概要 **/
黒ボク土は、火山灰土壌特有の性質を持ち、農業における評価が二分する土壌です。保水性、排水性、通気性は良好ですが、リン酸固定能が高く、肥料の効きが悪いため、施肥設計が重要となります。また、pHが低く酸性傾向があり、作物の生育に適さない場合も。さらに、有機物含有量が高いため、窒素飢餓や乾土効果による生育阻害も懸念されます。一方で、団粒構造が発達しやすく、適度な水分と養分を保持できるため、適切な土壌改良と施肥管理を行えば、高品質な農作物の生産も可能です。ただし、黒ボク土の特性を理解し、個々の圃場に合わせた対策が必要不可欠です。

 

寒空、川の縁で本葉を出す

/** Geminiが自動生成した概要 **/
川辺に芽生えた草の成長を見守る著者は、1週間半ぶりに同じ場所を訪れた。前回はまだ発芽したばかりだったが、今回は本葉が展開し始めていた。寒空の下、冷たい水辺という環境で力強く成長する様子に、著者は感嘆する。厳しい冬を前に、この小さな植物がどこまで成長できるのか、この環境は植物にとって快適なのか、それとも劣悪なのか、著者は思いを巡らせる。生命の力強さと、未知の未来への期待が感じられる観察記録となっている。

 

飛水峡甌穴群とチャート

/** Geminiが自動生成した概要 **/
飛水峡甌穴群を再訪し、甌穴とチャートを観察した。甌穴は岩が水流で削られたもので、飛水峡には約1000個存在する。赤茶色の岩肌は、以前学芸員に言及された美しいチャートと思われる。チャートは生物由来の堆積岩で、部分的に存在することもあるため、地域の土質が一様でないことを再認識した。飛騨小坂の巌立峡から下流に位置する飛水峡は、川の流れによって形成された景観が特徴。

 

川の流れを記録する石たち

/** Geminiが自動生成した概要 **/
飛騨小坂の道の駅で、川辺の石が一定方向に傾いているのを発見。これはインブリケーションという現象で、水流によって扁平な石が最も安定する向きに並ぶことで生じる。書籍によると、インブリケーションは過去の水流方向を知る手がかりとなる。今回の観察を通して、この風景を記憶にとどめ、今後の観察の参考にしたい。

 

炭酸冷泉で調理した肉まん

/** Geminiが自動生成した概要 **/
サイダー水で肉を柔らかくする調理法に着目し、天然サイダーである飛騨小坂の炭酸冷泉を使った肉まんを紹介している。炭酸冷泉は二酸化炭素を含み、肉を柔らかくする効果が期待できる。また、マグネシウムやカルシウム等のミネラルも豊富。実際に飛騨小坂で炭酸冷泉調理の肉まんを食したところ、ふわふわの食感と良い味で、炭酸冷泉の苦味は感じられなかった。温泉は入浴だけでなく、地域資源として調理にも活用され、様々な可能性を秘めている。

 

飛騨小坂の炭酸冷泉

/** Geminiが自動生成した概要 **/
飛騨小坂の炭酸冷泉は、御嶽山の噴火による溶岩流でできた場所に湧き、高い炭酸含有量を誇る飲用可能な鉱泉です。サイダーのような発泡と、鉄由来の独特の血のような味が特徴で、慢性消化器病などに効能があります。成分は含鉄(Ⅱ)-ナトリウム-炭酸水素塩、塩化物冷鉱泉。火山由来の二酸化炭素と重炭酸塩を多く含み、重曹の成分も含まれています。湧水には鉄が多く含まれ、空気に触れて酸化し、周辺は赤い川となっています。

 

飛騨小坂の霊泉覚明水

/** Geminiが自動生成した概要 **/
飛騨小坂の巌立峡近くにある湧水「霊泉覚明水」についての記事です。御嶽登山道を開いた覚明行者が発見したとされるこの水は、断層付近から湧き出ており、マグネシウムと思われる苦味があります。筆者は湧水を飲み、その苦味を体感しました。湧水と行者の関係性、地質的な背景、水質について考察しており、以前訪れた洞川温泉や城ヶ島での経験を踏まえ、学ぶべきことの多さを実感しています。

 

飛騨小坂の三ツ滝

/** Geminiが自動生成した概要 **/
飛騨小坂の巌立峡にある三ツ滝への散策の様子が描かれています。遊歩道は整備されているものの傾斜がきつく、連続した滝による岩の侵食が見られます。周辺には200近くの滝が存在し、川の水にはマグネシウム、カルシウム、腐植酸とキレートされた二価鉄が多く含まれているとのこと。このミネラル豊富な水が美味しい米作りに繋がっている可能性が示唆されています。また、岩の成り立ちについて考察されており、溶岩流由来か火山岩かの鑑定眼が欲しいと述べられています。

 

川と木々が巌立を削る

/** Geminiが自動生成した概要 **/
飛騨小坂の巌立峡では、川による侵食作用が地形形成に大きな影響を与えている。エメラルドグリーンの川は美しく、特に11月は水が澄んでいる。巌立の絶壁下部には土壌と礫が堆積しており、川が岩を削り、土壌を形成した痕跡が見られる。上部では岩の隙間に風化した黒い土が入り込み、植物が生育している。川は下から、植物は上から、長い時間をかけて巌立を侵食している。5万年かけて川が巌立を分断した事実は、川による侵食力の強さを示す。地形変化の主役は川であり、そこにはドラマがある。だからこそ、山だけでなく川にも注目する必要がある。

 

長雨や台風は大切な資源を削っていく

/** Geminiが自動生成した概要 **/
筆者は巌立峡の展望台を目指したが、超大型台風による土砂崩れで通行止めになっていた。自然災害の威力に落胆しつつ、近年の台風の大型化と人の活動、特にアジア諸国の発展による温暖化の関係についてNHKのニュースで見たことを想起する。PM2.5等の影響にも触れ、台風や長雨による地形への影響を懸念する。自身にできることを模索し、工業製品の使用量を減らす、農薬の使用量を減らす活動などを検討する。現代社会の恩恵を受けている以上、工業製品の使用を完全に断つことは難しいとしながらも、天気と向き合い、できることから取り組む必要性を感じている。

 

5万年もの間、川は巌立を削り続けた

/** Geminiが自動生成した概要 **/
ブルカノ式火山の火山灰は、農業利用において課題も多いが、土壌改良資材としての潜在能力も秘めている。火山灰土壌は、リン酸固定能が高く、植物のリン酸吸収を阻害する。しかし、リン酸を吸収しやすい植物種を選定したり、土壌改良材としてリン鉱石を活用することで、リン酸欠乏の問題を克服できる可能性がある。さらに、火山灰土壌は水はけが良い反面、保水性が低い。そこで、有機物や粘土鉱物を添加することで、保水性を高める対策が有効と考えられる。

 

飛騨小坂の巌立峡

/** Geminiが自動生成した概要 **/
飛騨小坂ジオパークは、日本最長の御嶽山溶岩流を主軸とした大地の公園です。30万年前の噴火で流れ出した溶岩は、幅4km、長さ17kmに渡り、現在の地形を形成しました。ジオパークでは、この溶岩流が生み出した奇岩や滝、豊かな自然を体感できます。 特に、溶岩流末端の巌立峡は、高さ50mの柱状節理が屏風のようにそびえ立ち、圧倒的な景観を誇ります。他にも、溶岩洞窟や甌穴群など、溶岩が生み出した様々な地形が存在します。飛騨小坂は、地球のダイナミズムを間近で感じ、学ぶことができる場所です。

 

客土が定着した地域、しなかった地域

/** Geminiが自動生成した概要 **/
関西で客土が一般的でない理由を、土壌の観点から考察しています。関東では土質改善目的で客土が盛んですが、関西、特に京都では客土の認知度が低い。京都周辺の山は、チャートや付加体が多く、玄武岩質や真砂土の起源となる地質が少ない。そのため、客土を試みても効果が薄く、定着しなかったと推測。一方、客土が盛んな地域は、山の地質が土壌改善に適した組成であるか、畑地の土壌が元来劣悪で客土の必要性が高かったと考えられる。川砂による客土はミネラル供給に有効なため、一部で行われている。

 

枕状溶岩と出会いに高槻の本山寺へ4

/** Geminiが自動生成した概要 **/
筆者は、高槻の本山寺周辺で海底火山由来の枕状溶岩を探す中で、緑色に変質した溶岩を発見。これは粘土鉱物の採掘に繋がるのではと考察し、土壌運搬のヒントになると考えた。次に、スランプボールと呼ばれる露頭箇所を目指し、川久保渓流の支流で傾斜した地層を確認。これは海底地すべりによって砂岩が泥の中に混じるスランプ構造であることを文献で確認した。しかし、砂岩の形状に関する記述の理解には至らず、今後の経験値蓄積と再調査を決意。付随して、衝上断層の判別方法が分からなかったことも記している。

 

枕状溶岩と出会いに高槻の本山寺へ3

/** Geminiが自動生成した概要 **/
高槻の本山寺周辺の枕状溶岩観察の後、川久保渓谷の緑色岩エリアを訪れた筆者は、白っぽい岩に緑色の斑点がある緑色岩を発見する。崩れ落ちた岩片は表面が薄い緑色で、これは緑泥石によるものだと推測される。この緑色岩を注視した筆者は、破砕すれば鉱物系の肥料として利用できる可能性を感じ、客土用の土として緑色岩が有効なのではないかと考察する。

 

枕状溶岩と出会いに高槻の本山寺へ2

/** Geminiが自動生成した概要 **/
高槻の本山寺周辺で枕状溶岩を含む緑色岩の露頭を観察した。南側の砂岩頁岩互層から北上し、断層と思われる境を越えると緑色の露頭が現れた。風化部分は赤や黒色が混じり、黒ボク土のような黒い土も確認できた。地質図によれば、この地域は1億6000万年前の付加体で、緑色岩は玄武岩質。枕状溶岩であることから海底火山由来と考えられ、黒ボク土の元となった火山活動は3億年前ほど前と推定される。古代の火山活動が生んだ土壌が現代の農業に利用されていることを実感した。

 

枕状溶岩と出会いに高槻の本山寺へ

/** Geminiが自動生成した概要 **/
著者は、中央構造線博物館で購入した書籍をきっかけに、高槻の有馬-高槻断層帯に興味を持つ。丹波帯への理解を深めるため、本山寺周辺の枕状溶岩露頭を目指す。枕状溶岩は海底火山の噴火で生成され、粘性の低い玄武岩質溶岩が水中で冷え固まることで、ソーセージ状の独特の形状となる。露頭探索に向け、大阪市立自然史博物館の展示や地質図鑑で枕状溶岩について予習した後、京都教育大学の資料を参考に現地へ向かう。

 

再び高槻の摂津峡に目を向けてみると

/** Geminiが自動生成した概要 **/
高槻の摂津峡の成り立ちについて考察している。渓谷は川の侵食や地殻変動で形成される。摂津峡の地質は複雑な付加体で、明確な成因は特定できないが、隆起と川の侵食が関わっていると考えられる。隆起時の傾斜が川の流れを決定し、その後の侵食で谷が深くなったと推測されるが、詳細は不明。川や渓谷の形成過程は複雑で解明が難しいことを示唆している。

 

再び七宗町の飛水峡へ目を向けてみると

/** Geminiが自動生成した概要 **/
長野の天龍峡は花崗岩を天竜川が削ってできた渓谷だが、岐阜の飛水峡は様子が異なる。飛水峡は日本最古の石が発見された場所で、美しいチャートで知られる。しかし、地質図を見ると、飛騨川は天龍峡のように単一地質を削ったのではなく、付加体という様々な岩石の集合体を流れている。チャートは硬いが、飛騨川が特別硬い岩を削って飛水峡を作ったわけではないようだ。つまり、飛水峡の形成は天龍峡とは異なるメカニズムによる可能性があり、更なる調査が必要である。

 

天龍峡の岸壁は花崗岩

/** Geminiが自動生成した概要 **/
天竜峡の岸壁は花崗岩で形成されています。記事では、天竜峡の始まり、中間、そして俯瞰図を用いて、地質図と照らし合わせながらその地形を解説しています。 峡谷の始まりは堆積岩ですが、中心部は両岸が細いピンク色の花崗岩地帯となっています。俯瞰図を見ると、天竜川が花崗岩を割るように流れている様子が確認できます。川が花崗岩を削って渓谷を形成したのか、地割れに川が流れ込んだのかは不明ですが、天竜峡は花崗岩の割れ目を流れる川であることは確かです。また、関連する「記憶の中では真砂土は白かった」という記事へのリンクも掲載されています。

 

名勝・天龍峡

/** Geminiが自動生成した概要 **/
長野県にある名勝・天龍峡を訪れた筆者は、中央構造線の見学後に立ち寄った。天竜川が生み出した渓谷である天龍峡は、水害が多い暴れ川として知られる一方で、様々な産業にも貢献してきた。筆者はNHK「ブラタモリ」の黒部ダムの回で渓谷形成の条件を学んでおり、両岸が固く同じ硬さの場合に谷間が狭く削られることを知っていた。そこで、天龍峡の渓谷の始まりを観察し、上流の広い川幅から急に狭くなり、両岸が急斜面になっていることに注目した。地質については次回に持ち越している。

 

石灰岩の地帯での栽培

/** Geminiが自動生成した概要 **/
石灰岩地帯である山口県では、土壌pHが上がりやすいため、石灰の使用量に注意が必要となる。通常、石灰は土壌pHを中性に戻すために消石灰や炭酸石灰を用いるが、過剰なカルシウムはカリウムなどの吸収を阻害する。山口県の大半は秋吉帯に属し、石灰岩質のため、関東圏の一般的な栽培方法は通用しない。地体構造を理解することで、地域に適した栽培方法を見つける重要性が示唆されている。色分けされた地質図は、こうした土地の特徴を把握するのに役立つツールとなる。

 

愛知県の渥美半島での栽培

/** Geminiが自動生成した概要 **/
愛知県渥美半島は、秩父帯由来のチャートや石灰岩を含む土壌で、赤黄色土の粘土質やグライ土が多く、排水保水性が悪いなど栽培に難しい土地である。しかし、日照時間の長さと豊富な水資源という好条件の中、土壌の不利を克服するため土耕栽培で試行錯誤を重ね、高度な追肥技術を培ってきた。この経験と観察眼は施設栽培にも継承され、溶液肥培管理技術の向上にも繋がっている。つまり、恵まれない土壌条件が、逆に高度な栽培技術発展の原動力となったと言える。

 

表層無機質中間泥炭土の周辺にあった石

/** Geminiが自動生成した概要 **/
宮城県涌谷町の畑で見つかった石の表面に付着した土を観察し、土壌の成り立ちを考察している。排水工事で掘り出された石の表面には、薄く剥がれた層と赤茶色の層が見られた。剥がれた層は畑の土壌と似ており、赤茶色の層はピートモス(脱水した泥炭)を想起させ、土壌インベントリーの情報を参照すると、この地域は表層が無機質、中間層が泥炭であることがわかる。石の表面の層が無機質の表層、赤茶色の層が泥炭の中間層だと推測し、泥炭層は圧縮されている可能性を示唆している。涌谷町の土壌は、石の表面に表層と中間層が堆積した様子から、その成り立ちを窺うことができる。

 

玄武岩質的な土の客土の中にあった鮮やかな赤

/** Geminiが自動生成した概要 **/
玄武岩質の黒ボク土を客土したハウスで、鮮やかな赤色の土壌が部分的に見られた。周辺には黒っぽい石があり、表面が茶色く錆びているものもあった。この赤色の土壌と石の錆は関連があるのだろうか。以前観察したスコリアと比較すると、今回の赤色は鮮やかで判断に迷う。土壌は目が粗く、風化が始まったばかりの可能性もある。この鮮やかな赤色の正体を突き止められれば、土壌の状態を理解する上で大きな手がかりとなるだろう。

 

山からの恵みを畑地へ

/** Geminiが自動生成した概要 **/
長野県栄村小滝集落では、火山灰土壌の弱点を克服するため、近隣の山の土壌を客土として利用している。小滝では、水はけの良い火山灰土壌に保水性のある土壌を混ぜることで、水稲栽培に適した土壌を作り出している。今回紹介された事例でも同様に、グライ土壌の上に山から運んだ土壌で客土を行い、ハウス栽培に適した環境を作っている。この土壌はアロフェン質黒ボク土で、バークや籾殻も混ぜて土壌改良されている。アロフェン質土壌はアルミニウムの問題を抱えるが、バークの添加により相乗効果が期待できる。このように、異なる土壌を組み合わせることで、それぞれの弱点を補い、作物栽培に適した土壌を作り出すことができる。小滝の事例と同様に、客土は土壌改良の有効な手段と言える。

 

泥炭土は有機質土

/** Geminiが自動生成した概要 **/
宮城県涌谷町で泥炭土を目撃し、その土壌について調べた。泥炭土は、加湿地の植物遺体が分解堆積した泥炭層を持つ土で、低湿地や水田に分布する。特徴は腐植含量が高く、無機態養分に乏しく、地耐力が小さい。涌谷町の泥炭土は、元は湖底に堆積した有機物が、地形の変化で陸地化したものと推測される。土壌インベントリーの情報から、表層は無機質で覆われているが、これは水田での鉱物の堆積によるものと考えられる。

 

東北へ

/** Geminiが自動生成した概要 **/
宮城県遠田郡涌谷町での農業研修を機に、東北地方の地質と土壌について考察。涌谷町はフォッサマグナや棚倉構造線の北に位置し、火山フロントの東側ながら黒ボク土は少ない。地質図によれば、山間部は火山岩、平野部は海成・非海成堆積岩から成り、土壌はグライ土が多い。実際に畑の土壌を観察すると、京都の土壌に似ているものの、乾燥した部分の形状は異なり、泥炭土の可能性が示唆された。

 

火山のあるところと再び京都夜久野高原の宝山に目を向けてみると

/** Geminiが自動生成した概要 **/
日本の火山の形成は、プレートの沈み込みに関係している。海溝からの距離に規則性があり、南海トラフのような海溝に沿って火山が分布する。兵庫、鳥取、島根などにも火山が存在し、京都夜久野高原の宝山も南海トラフの影響を受けた火山と考えられる。

 

再び四国徳島の三波川帯へと目を向けてみると

/** Geminiが自動生成した概要 **/
四国徳島で見られる緑色の石は、三波川変成帯に由来する。これは、かつてユーラシア大陸端に存在した日本列島に、海のプレートが沈み込む際に玄武岩質の岩体が潜り込み、高圧で変成、隆起したものだ。同様のメカニズムで秩父帯、四万十帯も形成され、日本列島の大陸からの分離後も、これらの地質帯は関東から九州へ横断して存在する。徳島の土壌の豊かさも、玄武岩質変成岩由来の粘土鉱物の豊富さに起因する可能性がある。地体構造を理解することで、地質図の「付加体」のブラックボックスが解消される。

 

日本列島がまだ大陸内にあった頃に形成された中央構造線

/** Geminiが自動生成した概要 **/
約1億年前、ユーラシア大陸の端に位置していた日本列島で、ユーラシアプレートと太平洋プレートの衝突により中央構造線が形成された。太平洋プレートは玄武岩、石灰岩、チャートを大陸側に運び、これらが変成・堆積して三波川帯、秩父帯、四万十帯を形成した。中央構造線は、付加体が大陸プレートに載り隆起することで右下方向に伸びている。 その後、日本列島は大陸から分離し、更に後にフォッサマグナが形成された。中央構造線周辺の地形は、過去の地殻変動を知る上で重要な手がかりとなっている。

 

大鹿村の中央構造線安康露頭

/** Geminiが自動生成した概要 **/
大鹿村で中央構造線の露頭を観察し、ユーラシアプレートとフィリピン プレートの境界を目の当たりにした。内帯(北側)は花崗岩の破砕岩、外帯(南側)は緑色岩(付加体)の破砕岩で、全く異なる地質だった。大鹿村では中央構造線は西南日本内帯と西南日本外帯を分ける。糸魚川-静岡構造線と中央構造線の関係、伊豆半島の影響についても触れ、過去のフォッサマグナや城ヶ島の地質に関する考察の誤りを訂正した。フォッサマグナの付加体と岐阜の最古の石は形成時期が異なるため、関連性がないことがわかった。今回の観察は、徳島県吉野川市で見た緑色岩の理解にも役立った。

 

白鬚神社の磐座

/** Geminiが自動生成した概要 **/
滋賀県にある白鬚神社は、琵琶湖畔の鳥居と道路を挟んで反対側にある本殿が特徴。本殿近くの山道を登ると、巨岩の磐座が祀られている。この巨岩は人が運ぶには困難な場所にあり、周囲の風化とは対照的に残っていることから、神秘的な意味を感じさせる。地質図によると、この巨岩は日本がユーラシア大陸と繋がっていた時代に形成された花崗岩質の深成岩である。

 

洞窟の中で黄色くなっても生きる草と出会う

/** Geminiが自動生成した概要 **/
石灰岩質の土壌では、カルシウム過剰により植物がカルシウム欠乏を起こすという逆説的な現象が起こる。高濃度のカルシウムは土壌pHを上昇させ、鉄やマンガン、リン、ホウ素、銅、亜鉛などの微量要素の吸収を阻害する。これらの要素は植物の生育に必須であるため、欠乏すると生育不良や黄化などの症状が現れる。具体的には、鉄欠乏は葉脈間の黄化、マンガン欠乏は葉脈に沿った黄化を引き起こす。リン欠乏は生育不良や根の発達阻害、ホウ素欠乏は花や果実の奇形、銅欠乏は葉の先端の白化、亜鉛欠乏は節間の短縮などを招く。カルシウム過剰によるこれらの問題に対処するには、土壌pHの調整が重要となる。酸性の堆肥や硫黄を施用することでpHを下げ、微量要素の吸収を促進できる。また、微量要素を含む肥料を施用することも有効である。

 

京丹波の質志鍾乳洞

/** Geminiが自動生成した概要 **/
鉄鉱石採掘跡の近くにある鍾乳洞を探検した記録。丹波地方の鐘乳洞は、かつて製鉄所で使われた鉄鉱石の産地付近に位置している。鉄鉱石は、鍾乳洞と同じく石灰岩地帯に多く存在する。鍾乳洞形成には、石灰岩を溶かす水と、空洞を作る地殻変動が必要となる。丹波地方は、地殻変動が活発な地域で、多くの鍾乳洞が存在する理由もそこにある。探検した鍾乳洞は、急斜面や狭い通路があり、内部は美しく、自然の神秘を感じさせる空間だった。鍾乳石や石筍などの鍾乳洞特有の景観も楽しめた。鉄鉱石と鍾乳洞という、一見無関係に見えるものが、地質学的な繋がりを持つことを示す興味深い探検だった。

 

ヒスイ輝石のあるところ

/** Geminiが自動生成した概要 **/
糸魚川で発見されたヒスイ輝石は、プレート沈み込み帯の低温高圧下で生成される。大陸プレートと海洋プレートの衝突地点付近の付加体最下層で、曹長石を原料に生成された後、蛇紋岩に捕獲され地表付近まで上昇してきた。そのため、ヒスイは糸魚川-静岡構造線ではなく、その西側の付加体エリアで発見される。小滝川上流の明星山麓も蛇紋岩地帯であり、この生成過程と合致する。しかし、同じ蛇紋岩地帯である大江山ではヒスイ発見の報告がないため、更なる調査が必要である。


Powered by SOY CMS  ↑トップへ