ブログ内検索

プログラミング教材開発
大阪府高槻市原地区で肥料教室を開いています
検索キーワード:「ひび割れ」
 

物理性の向上と中干し無しの田をサーモグラフィカメラを介して覗いてみたら

/** Geminiが自動生成した概要 **/
著者は、猛暑日が稲作に与える影響を懸念し、サーモグラフィカメラを用いて中干し無しの田と中干しを行った田の水温を比較しました。 結果は、中干し無しの田では水温が36℃前後と高く、田全体に高温の水が行き渡っている可能性が示唆されました。一方、中干しを行った田では、端は高温でも中心部は遮光により想定より気温が低いかもしれないと考察しています。 これは、中干し無しの田では水による熱伝導で高温が全体に広がりやすく、中干しを行った田では水がない分、遮光の影響を受けやすいことを示唆しています。 著者は、今回の結果から、中干し有無と株への影響について更に考察を深めたいと考えています。

 

早く訪れた猛暑日は稲作にどれ程影響するか?

/** Geminiが自動生成した概要 **/
今年の猛暑日は早く訪れ、中干し中の稲に高温障害をもたらしている可能性があります。中干し中に猛暑日が重なると、土壌の乾燥とひび割れが起き、根にダメージを与えてしまうからです。根が傷むとカリウムやマグネシウム、亜鉛の吸収量が減り、稲は養分を葉から他の部位へ転流させようとします。これが、葉の脱色や養分転流の活発化という形で現れます。根へのダメージは収穫量や病虫害抵抗性にも影響するため、猛暑と中干しの関係には注意が必要です。

 

冬期のレンゲ栽培は田植え後の雑草管理に影響するか?

/** Geminiが自動生成した概要 **/
田植え前のレンゲ栽培が、田植え後の雑草抑制に効果がある可能性を示唆する記事。レンゲ栽培を行った田では、雑草の発生が抑制され水が澄んでいる様子が観察された。レンゲ栽培と鋤き込みが、田の生態系に影響を与え雑草抑制に繋がると推測。一方、一般的な除草剤はオタマジャクシに悪影響を与える可能性があり、結果的にカメムシ等の害虫増加に繋がる可能性も指摘。中干しなしの稲作と合わせて、環境負荷の低い雑草対策の可能性を示唆している。

 

鉄分不足の解消で野菜の摂取は期待できるのか?

/** Geminiが自動生成した概要 **/
筆者は疲労感解消のため、鉄分不足に着目。運動後の鉄分摂取の重要性を指摘しつつ、鉄分豊富な野菜の栽培環境に疑問を呈しています。施設栽培で家畜糞を使うと土壌がアルカリ性になり、鉄分の吸収率が低下するため、野菜から十分な鉄分を摂取できない可能性を示唆。鉄分不足と疲労感の関係性について、さらに深く考察する必要性を訴えています。

 

稲作に土作りは不要なのか?

/** Geminiが自動生成した概要 **/
高槻の清水地区で行われたレンゲ米栽培では、田起こしの方法が注目された。一般的な稲作では土作りを軽視する傾向があるが、レンゲ米栽培では土壌の状態が重要となる。レンゲの鋤き込みにより土壌の物理性が改善され、保肥力も向上する。しかし、慣行農法の中干しは、畑作で言えばクラスト(土壌表面の硬化)を発生させるようなもので、土壌の物理性を低下させる。物理性の低い土壌は、酸素不足や有害ガス発生のリスクを高め、イネの根の成長を阻害する。結果として、病害虫への抵抗力が弱まり、収量低下や農薬使用量の増加につながる。経験と勘に頼るだけでなく、土壌の状態を科学的に理解し、適切な土作りを行うことが、レンゲ米栽培の成功、ひいては安全でおいしい米作りに不可欠である。

 

ウンカは水生生物の生態系にとって重要であるらしい

/** Geminiが自動生成した概要 **/
稲作の害虫として知られるウンカは、実はカエルや水生昆虫の重要な餌であり、水生生態系に不可欠な存在であることが指摘されています。慣行的な中干しは土壌のガス抜きが目的ですが、カエルやオタマジャクシなどの水生動物に悪影響を与え、稲の秀品率低下に繋がる可能性も示唆されます。しかし、レンゲ米栽培における土壌改良(田植え前の肥料選定や土作り)によってガス発生を抑制すれば、中干し不要で稲の生育を保ちつつ、水生生態系とウンカ対策を両立できる可能性を提示。持続可能な稲作へ向け、中干しに依存しない土壌管理の重要性を訴える記事です。

 

放棄された田はカヤツリグサでも生き残れない

/** Geminiが自動生成した概要 **/
耕作放棄された水田は深刻なひび割れが生じ、土壌が劣化している。稲作はおろぼず、通常強いカヤツリグサさえも枯死していることから、土壌劣化の末期状態と考えられる。カヤツリグサ科の植物は土壌が固い場所を好むため、これらの植物の出現は土壌劣化、特に土壌の弾力低下を示す指標となる可能性がある。この状態では、緑肥を蒔いても効果は期待できない。土壌の劣化は作物の発根を阻害するため、カヤツリグサ科の植物の繁茂は、栽培を見送る、あるいは堆肥を増やすなどの対策が必要なサインとなる。

 

猛暑日が多い中で中干しの意義を再検討する

/** Geminiが自動生成した概要 **/
猛暑日が続く中、稲作における中干しの意義を再検討する必要がある。高温は光合成の低下や活性酸素の増加につながり、葉の寿命に悪影響を与える。中干しは発根促進効果がある一方、高温時に葉温上昇を招く可能性もある。レンゲ栽培田では中干しによるひび割れがないにも関わらず、高温に耐えているように見える。ケイ酸質肥料は高温時の光合成を改善し、特に中干し後の幼穂形成期に吸収量が増加する。ケイ酸吸収が少ないと気孔の開きが悪くなり、葉温上昇につながる。また、珪藻等の微細藻類の殻は、植物が吸収しやすいシリカの形になりやすい可能性がある。

 

レンゲ米栽培の水田と無機一発肥料

/** Geminiが自動生成した概要 **/
レンゲ米栽培では土壌の生物相が変化し、有機一発肥料の肥効が前倒しになる可能性がある。しかし、レンゲ由来の有機物も影響するため、無機一発肥料の方が適している可能性もある。ただし、無機肥料でも水が必要で、中干しで土壌水分が減ると肥効が抑制される。レンゲ栽培では土壌有機物が増えるため、中干しの効果が低く、肥料切れのリスクが高まる。そのため、レンゲ米栽培で一発肥料を使う場合は、肥効の遅いタイプを選ぶか、オーダーメイド対応が必要となる。

 

一発肥料の2つの型

/** Geminiが自動生成した概要 **/
一発肥料には、シグモイド型とリニア型の二つの肥効パターンがある。樹脂コートで肥効を調整する無機一発肥料はシグモイド型、土壌環境に肥効を依存する有機一発肥料はリニア型となる。 前者は初期の肥効が緩やかで、その後急激に効き始め、最後は緩やかになる。後者は比較的安定した肥効が持続する。 レンゲ米栽培では、土壌環境の違いから一発肥料の肥効も変化する可能性が高い。レンゲを使う場合は有機一発肥料が魅力的に見えるが、土壌環境の違いを考慮すると無機一発肥料の方が適している可能性がある。

 

稲作の中干しの意義を整理する

/** Geminiが自動生成した概要 **/
レンゲ米の田では中干し時に土壌のひび割れ(クラスト)が発生しにくい。一般的に中干しは、土壌中の酸素不足による根腐れを防ぎ、有害ガス(硫化水素、アンモニアなど)を排出して発根を促進するとされる。しかし、レンゲによる土壌改良は、これらの有害ガスの発生自体を抑制するため、ひび割れが少なくても悪影響は小さいと考えられる。中干しには根の損傷や新たな根のROLバリア質の低下といったデメリットもあるため、レンゲ米栽培では従来の意義が薄れ、元肥設計の見直しなど新たな栽培体系の確立が求められる。

 

水生植物であるイネの根腐れについて考える

/** Geminiが自動生成した概要 **/
イネの根腐れは、長雨による酸素不足ではなく、硫化水素の発生が原因である可能性が高い。硫化水素は、水田の嫌気環境下で、硫酸塩系肥料(硫安、キーゼライト、石膏、家畜糞堆肥など)が土壌微生物によって分解される際に発生する。生物は硫黄を再利用する進化を遂げているため、土壌に硫黄化合物が過剰に存在するのは不自然であり、肥料由来と考えられる。硫化水素は鉄と反応しやすく、イネの光合成や酸素運搬に必要な鉄の吸収を阻害する。水田は水漏れしにくいため、過去の肥料成分が蓄積しやすく、硫黄を抜く有効な手段がないため、田植え前の土壌管理が重要となる。ただし、長雨による日照不足や水位上昇も根への酸素供給を阻害する要因となりうる。

 

シロザの下葉があまりにも赤くて

/** Geminiが自動生成した概要 **/
耕作放棄地で鮮やかな赤色のシロザを発見。白い粉状の模様からシロザと推測し、その赤色の原因を探る。一般的なストレスによる赤色とは異なり、鮮やかだったため、アントシアニンではなくベタレインという色素が原因だと判明。ベタレインはチロシンから合成されるベタラミン酸とDOPAが結合した構造を持つ。シロザの赤色の原因は生育環境への不適合か、土壌の悪化が考えられるが、詳しい原因は不明。このシロザは更なる研究対象として有望である。

 

冬野菜の生産性の向上は地温から

/** Geminiが自動生成した概要 **/
土壌からの強力な温室効果ガス、一酸化二窒素(N₂O)の排出は、地球温暖化に大きく寄与している。N₂Oは窒素肥料の施用によって増加し、特に硝化作用と脱窒作用が主要な発生源となる。硝化作用は好気的環境でアンモニアが硝酸に酸化される過程、脱窒作用は嫌気的環境で硝酸が窒素ガスやN₂Oに還元される過程である。土壌の水分状態、酸素濃度、有機物含量、温度などがこれらの反応速度に影響を与えるため、N₂O排出量は変動する。過剰な窒素肥料施用はN₂O排出を増加させるため、土壌診断に基づいた適切な施肥管理が重要となる。また、硝化抑制剤や緑肥の活用など、N₂O排出削減のための技術開発も進められている。

 

家畜糞堆肥による土作りを止める勇気を

/** Geminiが自動生成した概要 **/
家畜糞堆肥の過剰施用は、秀品率低下や農薬使用量増加につながり、結果的に肥料代削減効果を上回る損失をもたらす。多くの農家が家畜糞堆肥を多用し、土壌劣化を引き起こしている。硝酸態窒素過剰は土壌pHを低下させ、カリウム欠乏、根の弱化、肥料吸収阻害を招く。さらに、硝酸態窒素は発根を阻害し、土壌水分や肥料分の吸収量を低下させる。結果として、微量要素の吸収阻害による作物栄養価の低下も懸念される。家畜糞堆肥は有機質肥料と誤解されがちだが、過剰施用は土壌環境悪化の大きな要因となる。家畜糞の増加は深刻な問題であり、栽培と畜産が連携し、食と健康を見直す必要がある。牛乳は栄養価が高いが、その副産物である家畜糞の処理は適切に行われなければならない。医療費増加抑制のためにも、家畜糞堆肥の施用量を見直すべきである。

 

栽培の中心にはいつも化学

/** Geminiが自動生成した概要 **/
著者は10数年前、京丹後で栽培を学び、師と共に米ぬかボカシから化学を体系化。その後、京都農販と出会い慣行栽培の化学も探求した。各地での講演を通じ、不利な土地での技術洗練や、知識を貪欲に吸収・活用する農家の強さを実感。自身の経験を通し、栽培技術向上の中心には常に化学があったと振り返る。

 

シイタケが老いる

/** Geminiが自動生成した概要 **/
著者は、以前に撮影した椎茸の写真が本当に椎茸か確信が持てなかった。 通常イメージする椎茸と異なり、傘の縁が波打ち白い綿毛がなかったためだ。 その後、きのこ図鑑で「若い椎茸には白い綿毛があり、古くなるとなくなり、縁も波打つ」という記述を発見。 写真の椎茸は老菌だったことが判明した。 この発見は、著者が抱えていた疑問の解消に繋がり、廃菌床堆肥の質に関する重要な問題に関係しているという。 詳細は次回に持ち越される。

 

毒性のある金属を体内に蓄積するコケたち

/** Geminiが自動生成した概要 **/
銅苔は、高濃度の銅を含む環境に適応したコケ植物で、銅を無性芽と呼ばれる特殊な細胞に蓄積することでニッチを獲得している。銅苔の無性芽は、銅イオンへの暴露によって分化が誘導される。この分化には、特定の転写因子や銅輸送タンパク質が関与しており、複雑な遺伝子制御ネットワークが存在する。無性芽は銅耐性だけでなく、乾燥や紫外線など他のストレスにも耐性を示し、銅苔の生存戦略において重要な役割を果たしている。銅の蓄積は、銅苔が他の植物との競争を避け、特殊な環境に適応するための進化的な戦略と考えられる。

 

自身の養分は自身で確保する

/** Geminiが自動生成した概要 **/
毎日通る道に、人の手が入らない場所がある。そこでは、ひび割れから生えた草が落ち葉を根元に集め、養分としている。植物は動けないため、周囲の有機物を利用するのだ。 しかし、人間の視点では、落ち葉が定着するのは困りもの。放置すると土壌が形成され、他の植物も根を張る。いずれ、植物の力はアスファルトを貫通するのだろうか?

 

イネ科緑肥の効果、再考

/** Geminiが自動生成した概要 **/
露地ネギの畝間に緑肥マルチムギを導入したところ、ひび割れ多発土壌が改善し、ネギの生育も向上した。ひび割れの原因は腐植不足と水溶性成分蓄積(高EC)だが、マルチムギはこれらの問題を解決する。マルチムギは活性アルミナを無害化し、養分を吸収、土壌を柔らかくして排水性を向上させる。これにより、作物の発根が促進され、高EC土壌でも生育が可能になる。マルチムギとの養分競合も、基肥を発根促進に特化し、NPKを追肥で施すことで回避できる。結果として、発根量の増加は微量要素の吸収を促し、病害虫への抵抗性向上に繋がる。

 

マルチムギが劣化土壌に果敢に挑む

/** Geminiが自動生成した概要 **/
肥料の過剰供給による土壌劣化と、それに伴うスギナ繁茂、ひび割れ、保水力低下といった問題を抱えた畑で、マルチムギ導入による土壌改善を試みた事例を紹介。 休ませることのできない畑で、連作と速効性肥料により土壌が悪化し、アルミニウム障害を示唆するスギナが蔓延していた。ネギの秀品率も低下するこの畑で、マルチムギを栽培したところ、スギナが減少し始めた。 マルチムギは背丈が低いためネギ栽培の邪魔にならず、根からアルミニウムとキレート結合する有機酸を分泌する可能性がある。これにより、土壌中のアルミニウムが腐植と結合し、土壌環境が改善されることが期待される。加えて、マルチムギはアザミウマ被害軽減効果も期待できる。

 

ひび割れ環境でなんとか伸長したけれど

/** Geminiが自動生成した概要 **/
ひび割れた過酷な土壌環境で、ノゲシやタネツケバナは stunted growth を示し、タネツケバナはアブラムシに覆われていた。これは、植物が周囲の環境を変えながら成長するとはいえ、厳しい環境では成長が阻害され、地力回復も期待できないことを示唆する。ひび割れた畑の休耕は、雨水による除塩以外に効果が薄く、植物が生育できる環境を整えることが重要となる。具体的には、休耕前に植物性の有機物を投入し、排水性と保水性を改善することでひび割れを解消し、植物の生育を促進、除塩や土壌改良を進める必要がある。写真に写る植物たちの状態は、休耕だけでは地力回復が難しいことを示す明確な証拠である。

 

あのノゲシが負ける土があるとは

/** Geminiが自動生成した概要 **/
京都市内のひび割れた畑で、植物の生育状態を観察した。通常強いノゲシさえも、丈が低く生育不良だった。植物は根から環境を変えながら成長すると言われるが、この土壌ではどの植物も生育が困難なため、環境改善には至らない。この状況は、世界的な問題である農地の砂漠化を彷彿とさせる。植物が育たない土壌では、生態系が維持されず、砂漠化のような状態に陥ってしまうことを実感した。

 

米の美味しさの鍵は糊化

/** Geminiが自動生成した概要 **/
米の美味しさの鍵は、炊飯時の糊化、特にデンプンの断片化にあります。 白米の浸水時に胚乳にクラック(ひび割れ)が生じ、そこから水が浸入し糊化が始まります。クラックが多いほど糊化が進み、甘みが増すと考えられます。 美味しさはクラックの発生しやすさだけでなく、クラック後にアミラーゼがどれだけ活発に働くか、つまり胚乳内に含まれるアミラーゼの量に依存します。アミラーゼはタンパク質なので、胚乳形成時にどれだけアミノ酸が分配されたかが重要です。アミノ酸の種類によっては吸水力に影響し、クラックの発生や炊き上がり後のご飯粒が立つ現象にも関与している可能性があります。 ultimately、光合成を促進しアミノ酸合成を活発にする健全な栽培が美味しい米作りに繋がります。

 

草達はちょっとしたひび割れを常に狙っている

/** Geminiが自動生成した概要 **/
塀のひび割れは、植物にとって格好の侵入口となる。写真のホトケノザのように、植物は垂直な壁面でもひび割れに根を張り成長する。植物の根から分泌される酸は、コンクリートの炭酸塩を溶かす作用があるため、風化を加速させる。ひび割れは酸素の侵入も容易にし、風化作用をさらに促進する。結果として、わずかなひび割れも植物の根酸と風化によって拡大し、塀のような人工物にとって深刻なダメージとなる。所有者にとっては、ひび割れの発生は早急な対応が必要な脅威と言える。

 

局所的ひび割れ、植物にとって過酷な領域

/** Geminiが自動生成した概要 **/
根は土壌改良において重要な役割を果たす。植物の根は土壌に物理的な隙間を作り、空気や水の循環を促進する。これにより、土壌中の微生物活動が活発化し、有機物の分解と養分の循環が促される。さらに、根から分泌される物質や根の死骸は土壌有機物となり、土壌の団粒構造形成に寄与する。団粒構造は、保水性、排水性、通気性を向上させ、植物の生育に適した環境を作る。また、根は土壌侵食を防ぐ役割も担う。特に、草本植物の緻密な根系は表土をしっかりと保持し、風雨による侵食を抑制する。このように、根の働きは土壌の肥沃度を高め、植物の生育を支える基盤となっている。

 

草はアスファルトのちょっとした隙間を常に狙っている

/** Geminiが自動生成した概要 **/
廃道となったアスファルトの隙間から伸びる草の生命力に注目し、自然の力強さを描いています。道路の縁、修繕跡、ひび割れといった僅かな隙間に根を下ろし、アスファルトを徐々に弱らせていく様子から、人工物もいずれ自然に還るという事実を考察しています。アスファルトの原料が石油の残油であることをWikipediaで調べ、それが太古の生物の死骸由来であることに思いを馳せ、道路が死骸の油で覆われているという少しホラーな視点も提示しています。そして、人工物も自然由来の原料から作られていることを再認識し、アスファルトに挑む草の種類をイネ科かカヤツリグサ科と推測しています。最後に関連として緑肥に関する記事へのリンクを掲載しています。

 

石垣の上で根付く

/** Geminiが自動生成した概要 **/
石垣の上でたくましく根付く一本の草。なぜこんな場所で発芽できたのか?根元にはひび割れも見えない。微細な穴に根を張ったのか、それとも発芽当時は小さな穴があり、成長に伴い穴が隠れてしまったのか?後者の方が根付きやすいと推測されるが、驚くべきことにこの草は単子葉植物のエノコログサ。小さな隙間からでも力強く芽を出し、成長していく生命力に感嘆する。このまま放置すれば、いずれ石垣は崩れてしまうだろう。

 

おそらく彼らは大海原を越えてきた

/** Geminiが自動生成した概要 **/
街路樹の根元に咲くオランダミミナグサは、おそらく船のコンテナに紛れ込み大海原を越えてきた外来種。侵入経路は不明だが、土の上に落ちた幸運が繁殖のきっかけとなった。コンクリートに落ちていたら、発芽は難しかっただろう。今、目の前にあるオランダミミナグサは、幾つもの幸運が重なって子孫を残せた証であり、在来種を抑えて繁殖するのも必然と言える。

 

ひび割れの中からこんにちは

/** Geminiが自動生成した概要 **/
乾燥した元水田のひび割れた土壌で、植物が発芽している様子が観察された。土壌は有機物が不足し、栽培には不向きに思われたが、ひび割れの中で発芽することで、常に湿潤な環境を確保している可能性がある。地温は低いと予想されるものの、土壌表面と比べて競争相手が少なく、光を得やすいという利点があるかもしれない。一見不利な環境でも、植物は生き残るための戦略を見出し、独自のユートピアを築いているのかもしれない。しかし、この環境が本当に有利かどうかは不明である。

 

知らない間に溜まっている石灰

/** Geminiが自動生成した概要 **/
水溶性肥料の多用は土壌水分のイオン濃度を高め、塩類集積を引き起こす。肥料の陰イオン(硫酸イオンなど)は土壌に残留し、過剰な石灰(カルシウムイオン)と結合して硫酸カルシウムを形成する。硫酸カルシウムは若干の水溶性だが、蓄積すると土壌の浸透圧が上昇し、植物の吸水を阻害する。結果、ひび割れや枯死が発生する。塩類集積は、肥料成分の偏りによるイオン濃度の上昇と、カルシウム過剰による他の要素の欠乏症を同時に引き起こす深刻な農業問題である。

 

繋がりを断ち切れ

/** Geminiが自動生成した概要 **/
バーク投入で土の保水力向上は、バーク自体の保水力に加え、土壌表面のひび割れ減少が要因。ひび割れ減少は、土同士の結合が弱まったためと考えられる。耕起後の土壌粒子は放置すると互いに結合し、塊を形成する。硬い塊ほど、塊の間に大きなひび割れが生じる。腐植を投入すると、土粒子間に腐植が入り込み、土同士の結合を阻害する。結果、乾燥時に形成される塊は小さく、ひび割れも発生しにくい。さらに、腐植混入土壌は空気に触れる表面積が広く、鉱物の酸化を促進。これにより土同士の結合はさらに弱まり、大きな塊の形成が抑制される。結果として団粒構造の形成へと繋がる。

 

作業を減らしたければ、腐植を突っ込め

/** Geminiが自動生成した概要 **/
ニンジンの水やり軽減のため、腐植の効果を実験。腐植入り区画と無腐植区画にニンジンを播種し、不織布で覆った。3日後、腐植入り区画は播種箇所が湿っていたが、無腐植区画は乾燥していた。腐植は土のひび割れを減らし、表面積を小さくすることで乾燥を防いだと考えられる。腐植40リットル(800円)で水やり頻度が週3回から週1回に減る可能性があり、作業軽減効果は大きい。更に、腐植入りの土は畝立て作業も楽だった。

 

強いつながりに作物の根は入れません

/** Geminiが自動生成した概要 **/
強い土のつながりがあると、作物の根の成長を妨げてしまう。栽培に適した土は、土同士の塊が小さく、つながりが弱い必要がある。そのためには、土同士のつながりを弱める方法を見つける必要がある。次回では、この土同士のつながりを断ち切る方法を検討する。

おすすめの検索キーワード
おすすめの記事

Powered by SOY CMS   ↑トップへ