ブログ内検索

micro:bitページ
とにかく速いブログサイトを目指す
検索キーワード:「アロフェン」
 

赤玉土とは何だろう?

/** Geminiが自動生成した概要 **/
赤玉土は園芸でよく使われるが、軽石ではなく関東ローム層由来の粘土だ。アロフェンを含むため酸性を示し、鉄や硫黄も多く含むため硫化水素が発生し、根腐れの原因となる場合がある。しかし、通気性、保水性、保肥性に優れるというメリットもある。鹿沼土よりも風化が進んだ状態であり、風化軽石の選択肢の一つとなる。注意点として、含まれる硫黄は化学反応や菌の活動により硫化水素を発生させる可能性があり、アルミニウム、鉄、硫黄の多さがリン酸吸収係数の増加や根腐れに繋がる可能性がある。 風化の度合いを考慮し、鹿沼土などの軽石と使い分ける必要がある。

 

粉砕した鹿沼土に水を加えてみた

/** Geminiが自動生成した概要 **/
鹿沼土(鹿沼降下軽石)を粉砕し、水に溶けるか(正しくはコロイド化するか)を実験した。粉砕した鹿沼土を半透明容器に水と共に入れ、静置した結果、粒子の大きさによって層状に分離した。大きな粒子は浮遊し、細かい粒子は沈殿した。上澄みは半日後には透明になった。浮遊物を除去した残りは、粘土(モンモリロナイト、カオリナイト)のような粘性は無いものの、一時的に泥水状態になったことから、粘土鉱物(アロフェン)とみなせる。容器底には黒い粒子が確認され、これは鉄を含む鉱物と考えられる。

 

鹿沼土はなぜpHが低い?

/** Geminiが自動生成した概要 **/
アロフェンは、pH依存的に陽イオン交換容量(CEC)と陰イオン交換容量(AEC)を示す粘土鉱物です。低pH環境では、アルミニウムイオンが水と反応してプロトンを放出し、正に帯電した表面を形成するため、陰イオンを吸着しAECを示します。高pH環境では、水酸基がプロトンを放出し、負に帯電するため、陽イオンを吸着しCECを示します。つまり、アロフェンを含む土壌のイオン交換容量はpHに大きく影響され、酸性土壌ではAEC、アルカリ性土壌ではCECが支配的になります。この性質は、土壌の養分保持能力や土壌改良に影響を与えます。

 

鹿沼土を粉砕してみた1

/** Geminiが自動生成した概要 **/
鹿沼土は栃木県鹿沼市で採掘される軽石の一種で、火山灰が凝結した凝灰岩。ダイソーで購入した鹿沼土は風化が進み、指で容易に粉砕できた。断面は層状構造や色の濃淡が見られ、黒っぽい硬い部分は鉄を含む鉱物と思われる。鹿沼土にはアロフェンが含まれる場合があり、他の資材との組み合わせで新たな可能性が期待される。アロフェンは火山ガラスなどが風化してできた粘土鉱物で、保水性、通気性、肥料保持に優れる。鹿沼土の多孔質構造も相まって、植物の生育に適した環境を提供する。

 

軽石の化学的風化の内の水の作用について

/** Geminiが自動生成した概要 **/
庭の軽石の表面の茶色い部分は風化によってできた粘土鉱物ではないかと考え、軽石の風化を早める方法を模索している。軽石の主成分である火山ガラスは、化学的風化(加水分解)によって水と反応し、粘土鉱物に変化する。水に浸けるだけでは時間がかかりすぎるため、より効率的な風化方法を探している。

 

軽石の表面がうっすらと茶色い

/** Geminiが自動生成した概要 **/
アロフェンは火山灰土壌に特有の粘土鉱物で、リン酸吸収力が高く、植物の生育に重要です。微細な球状構造で、内部に空洞を持つため、保水性と通気性を両立します。また、陽イオン交換容量も高く、土壌肥沃度に貢献します。 しかし、リン酸を強く吸着するため、植物が利用しにくい形態で固定される欠点も持ちます。このため、アロフェン質土壌ではリン酸肥料の施用が重要となります。生成は火山ガラスの風化に由来し、腐植との相互作用も影響します。

 

造岩鉱物の成れの果て

/** Geminiが自動生成した概要 **/
造岩鉱物から粘土鉱物への風化の後、カオリナイトはさらに水と反応してギブス石と二酸化ケイ素になる。ギブス石はCECがなく、二酸化ケイ素も栽培に不利なため、造岩鉱物の風化の行き着く先は栽培難易度の高い赤黄色土と呼ばれる土壌となる。 赤黄色土は日本土壌インベントリーで容易に確認できる。ギブス石はさらに風化してボーキサイトになる可能性があるが、ここでは触れない。

 

アロフェンと活性アルミナ

/** Geminiが自動生成した概要 **/
火山灰土壌に特徴的なアロフェンは、風化すると層状の粘土鉱物であるカオリナイトに変化します。この過程で、アロフェンの構造中の余剰なアルミニウム(Al)が活性アルミナとして遊離します。 アロフェンは、内側に少ないケイ素(Si)、外側に多くのAlを持つ構造です。風化によってAlが外れることで構造が変化し、カオリナイトのような層状構造が形成されます。 この活性アルミナは植物の根の成長に悪影響を与える可能性があり、火山灰土壌での栽培では注意が必要です。特に、アロフェンを多く含む黒ボク土では、活性アルミナの量が多くなる傾向があります。

 

火山ガラスとは何か?

/** Geminiが自動生成した概要 **/
火山ガラスは、急速に冷えたマグマからできる非晶質な物質です。黒曜石や軽石などがあり、風化すると粘土鉱物であるアロフェンに変化します。軽石は風化すると茶色い粘土になり、これはアロフェンを含んでいます。このことから、軽石を堆肥に混ぜると、アロフェンが生成され団粒構造の形成を促進し、堆肥の質向上に役立つ可能性があります。軽石の有効活用として期待されます。

 

アロフェンのCECとAEC

/** Geminiが自動生成した概要 **/
アロフェンは、外側にAl、内側にSiが配置する独特な構造を持つ粘土鉱物です。Alによる正電荷とSiによる負電荷が、特徴的なAECを示します。また、Si-O結合の不規則な切断(Broken-bond defects)により、高いCECを示します。アロフェンは火山ガラスだけでなく、長石の風化過程で生成されることもあります。

 

栽培上重要なアロフェンという名の粘土鉱物

/** Geminiが自動生成した概要 **/
アロフェンは、土壌名「アロフェン質黒ボク土」に見られる重要な粘土鉱物です。非晶質で、中空球状の形態をしています。構造は、Al八面体シートとSi四面体シートが組み合わさり、球状に重なり合った形をしています。シートの重なりには小さな隙間が存在します。一般の粘土鉱物とは異なり、層状構造を持たない点が特徴です。

 

米の美味しさは水の綺麗さというけれど

/** Geminiが自動生成した概要 **/
清水っ粉(米粉)の品質向上を目指し、米の食味向上、特に甘味・旨味と粉の粘性の関係を探る著者は、高品質米産地との共通点から水質の重要性に着目している。栄村や浅川町等の事例から、カリウムよりも鉄やマグネシウム豊富な水質が鍵となる可能性を示唆。仁多米産地周辺のベントナイト鉱山に着目し、海由来のミネラルを含む粘土鉱物が水質に影響を与え、米の食味向上に寄与する仮説を立てている。小滝集落の牛糞施肥はカリウムが少ない土壌で有効だったと推測し、ベントナイトのような粘土鉱物肥料の可能性を探っている。

 

1:1型粘土鉱物に秘められた可能性

/** Geminiが自動生成した概要 **/
1:1型粘土鉱物は、風化により正電荷を帯び、病原菌を吸着不活性化する可能性を持つ。火山灰土壌に多いアロフェンではなく、畑土壌に豊富な1:1型粘土鉱物に着目し、その風化を促進する方法を考察する。風化には酸への接触が必要だが、硫安等の残留性の高い肥料は避けたい。そこで、米ぬかボカシ肥に着目。嫌気発酵で生成される乳酸による持続的な酸性環境が、1:1型粘土鉱物の風化を促すと考えられる。同時に、嫌気発酵中の微生物増殖により病原菌も抑制できる。理想的には、米ぬかボカシ肥が1:1型粘土鉱物の正電荷化を促進し、病原菌の吸着・不活性化に貢献する効果が期待される。

 

粘土有機複合体から粘土鉱物肥料についてを考える

/** Geminiが自動生成した概要 **/
粘土鉱物を肥料として活用する目的は腐植蓄積だが、粘土鉱物と腐植の繋がりは疑問が残る。2:1型粘土鉱物は正電荷が少ないため、有機物とのイオン結合による蓄積モデルでは説明が不十分。しかし、現実には2:1型粘土鉱物投入で土壌改良効果が見られる。これはAl由来の正電荷以外の結合機構を示唆する。ヒントとして、カオリン鉱物と酢酸カリウムの水素結合、スメクタイトとアルキルアンモニウムの正電荷による結合が挙げられる。腐植蓄積にはこれら以外のメカニズムが関与していると考えられ、特定の肥料と現象がその鍵を握る可能性がある。

 

風化した斑れい岩を観察する前に斑れい岩について整理しよう

/** Geminiが自動生成した概要 **/
竹野海岸のグリーンタフ(緑色凝灰岩)は、日本海形成時の火山活動で噴出した火山灰が海底に堆積し、熱水作用で変質した岩石。その緑色は、含まれる鉱物中の鉄イオンが酸化第二鉄から酸化第一鉄に変化したため。風化すると褐色になる。 グリーンタフは、その形成過程から、当時の日本海の環境や地殻変動を知る上で重要な手がかりとなる。周辺には、グリーンタフが風化してできた粘土質の土壌が広がり、水はけが悪く、稲作には不向きだが、果樹栽培などに適している。 記事では、グリーンタフを観察しながら、岩石の風化と土壌形成のプロセス、そして地域の農業との関連について考察している。火山活動が生み出した岩石が、長い時間をかけて土壌へと変化し、地域の産業に影響を与えていることを示す好例と言える。

 

粘土鉱物が出来る場所

/** Geminiが自動生成した概要 **/
凝灰岩が地下深くに埋没し、熱水変質作用を受けることで粘土鉱物が生成される。熱源の深さや熱水の流動性、水素イオン濃度、温度などが生成される粘土鉱物の種類(スメクタイト、沸石など)に影響する。山陰地方で産出される沸石凝灰岩は土壌改良材として利用される。モンモリロナイトや沸石は、凝灰岩が熱水変質作用を受けた後、地質学的イベントで隆起し地表に出現することで採掘可能になる。これらの粘土鉱物を土壌に投入すると、非アロフェン質の黒ボク土へと変化する可能性がある。

 

土壌が酸性でないところでもスギナが繁茂した

/** Geminiが自動生成した概要 **/
土壌分析の結果pHが中性でもスギナが繁茂する理由を、アルミナ含有鉱物の風化に着目して解説しています。スギナ生育の鍵は土壌pHの酸性度ではなく、水酸化アルミニウムの存在です。アルミナ含有鉱物は風化により水酸化アルミニウムを放出しますが、これは酸性条件下だけでなく、CECの低い土壌でも発生します。CECが低いと土壌中の有機物や特定の粘土鉱物が不足し、酸が発生しても中和されにくいため、粘土鉱物が分解され水酸化アルミニウムが溶出します。同時に石灰が土壌pHを中和するため、pH測定値は中性でもスギナは繁茂可能です。対照的にCECの高い土壌では、腐植などが有機物を保護し、粘土鉱物の分解とアルミニウム溶出を抑えます。つまり、pHだけでなくCECや土壌組成を総合的に判断する必要があるということです。

 

つくばのHATAKEカンパニーさんで黒ボク土での栽培についての話をしました

/** Geminiが自動生成した概要 **/
つくばのHATAKEカンパニーで、圃場巡回と黒ボク土での施肥設計についての講演を行いました。 現地の土壌は腐植質厚層アロフェン質黒ボク土で、腐植に富み、土壌が深いという利点がある一方、活性アルミナの問題も懸念されます。 講演では、黒ボク土の特徴を踏まえ、リン酸施肥による活性アルミナ対策や、肥料による栽培環境改善の可能性について解説しました。 詳細は「黒ボク土の活性アルミナ対策としてのリン酸施肥」「土壌のアルミニウムが腐植を守る」及び京都農販日誌の記事を参照ください。

 

山梨県甲府市の農業者向けの勉強会で黒ボク土での栽培の話をしました

/** Geminiが自動生成した概要 **/
山梨県甲府市で、黒ボク土での栽培に関する農業研修の講師を務めました。甲府市はアロフェン質黒ボク土が多く、排水性・保水性・CECが高い一方、活性アルミナ障害を受けやすいという特徴があります。研修では、この活性アルミナ障害の発生原因や、既存の肥料を用いた秀品率向上のための対策について解説しました。具体的には、リン酸施肥による活性アルミナ対策などを紹介し、黒ボク土の特性を理解した効果的な栽培方法を提案しました。

 

南九州の有村青果さん主催の勉強会で黒ボク土の話をしました

/** Geminiが自動生成した概要 **/
黒ボク土は保水性、通気性、排水性に優れる一方、リン酸固定や乾湿の激しい土壌変化といった課題も持つ。リン酸固定は鉄やアルミニウムとリン酸が結合し、植物が利用できない形態になる現象。土壌pHが低いほど固定は強まり、作物の生育に悪影響を及ぼす。この対策として、土壌改良資材の活用が有効。特にケイ酸資材はリン酸固定を抑制し、土壌の団粒化を促進、保肥力を高める。また、堆肥などの有機物施用も土壌改良に貢献する。これらの対策により、黒ボク土の弱点を克服し、その優れた特性を活かした効果的な農業が可能となる。

 

黒ボク土の活性アルミナ対策としてのリン酸施肥

/** Geminiが自動生成した概要 **/
苦土(マグネシウム)は植物の生育に必須で、葉緑素の構成要素やリン酸吸収を助ける役割を持つ。土壌中の苦土は、粘土鉱物や腐植に吸着された交換性苦土として存在し、植物はこれを利用する。しかし、火山灰土壌では交換性苦土が少なく、リン酸過剰やカリウム過剰によって苦土欠乏症が発生しやすい。土壌分析で交換性苦土が1.5cmol/kg以下なら欠乏の注意が必要。対策として、苦土肥料の施用が有効だが、土壌pHや他の養分とのバランスも考慮する必要がある。特に、リン酸とカリウムは苦土の吸収を阻害するため、過剰施用は避けるべき。苦土欠乏は葉脈間が黄化するなどの症状で現れるため、早期発見と適切な対応が重要。

 

粘土鉱物を理解する旅3

/** Geminiが自動生成した概要 **/
ブルカノ式火山の火山灰土壌は、輝石や角閃石といった造岩鉱物を多く含み、植物の生育に有利な性質を持つ。これらの鉱物は風化速度が速いため、カリウムやマグネシウム、カルシウム、鉄などの植物必須元素を供給する。また、風化過程で粘土鉱物が生成され、保水性や保肥性を向上させる。ただし、リン酸固定能が高いため、リン酸肥料の施用には注意が必要となる。さらに、火山性土壌特有の軽石や火山礫は、土壌の通気性や排水性を高める効果がある。これらの特性から、ブルカノ式火山由来の土壌は、適切な管理を行うことで高い生産性を持つ農地となる可能性を秘めている。

 

粘土鉱物を理解する旅2

/** Geminiが自動生成した概要 **/
粘土鉱物の理解を深めるため、各地のジオパークや博物館で得た情報をもとに、土壌における役割を考察している。地震や火山活動により長石などのアルミノ珪酸塩が粘土鉱物に変質する過程に着目し、図鑑で長石の種類や変質経路を調べた。温泉のpH変化と粘土鉱物の関係、黒ボク土のアロフェンと非アロフェンの起源にも触れ、どちらもアルミノ珪酸塩の二次鉱物であることを指摘。最終的に、アルミノ珪酸塩の分布と火成岩の関係へと議論を展開する。

 

枕状溶岩と出会いに高槻の本山寺へ2

/** Geminiが自動生成した概要 **/
高槻の本山寺周辺で枕状溶岩を含む緑色岩の露頭を観察した。南側の砂岩頁岩互層から北上し、断層と思われる境を越えると緑色の露頭が現れた。風化部分は赤や黒色が混じり、黒ボク土のような黒い土も確認できた。地質図によれば、この地域は1億6000万年前の付加体で、緑色岩は玄武岩質。枕状溶岩であることから海底火山由来と考えられ、黒ボク土の元となった火山活動は3億年前ほど前と推定される。古代の火山活動が生んだ土壌が現代の農業に利用されていることを実感した。

 

山からの恵みを畑地へ

/** Geminiが自動生成した概要 **/
長野県栄村小滝集落では、火山灰土壌の弱点を克服するため、近隣の山の土壌を客土として利用している。小滝では、水はけの良い火山灰土壌に保水性のある土壌を混ぜることで、水稲栽培に適した土壌を作り出している。 今回紹介された事例でも同様に、グライ土壌の上に山から運んだ土壌で客土を行い、ハウス栽培に適した環境を作っている。この土壌はアロフェン質黒ボク土で、バークや籾殻も混ぜて土壌改良されている。アロフェン質土壌はアルミニウムの問題を抱えるが、バークの添加により相乗効果が期待できる。 このように、異なる土壌を組み合わせることで、それぞれの弱点を補い、作物栽培に適した土壌を作り出すことができる。小滝の事例と同様に、客土は土壌改良の有効な手段と言える。

 

東北へ

/** Geminiが自動生成した概要 **/
宮城県遠田郡涌谷町での農業研修を機に、東北地方の地質と土壌について考察。涌谷町はフォッサマグナや棚倉構造線の北に位置し、火山フロントの東側ながら黒ボク土は少ない。地質図によれば、山間部は火山岩、平野部は海成・非海成堆積岩から成り、土壌はグライ土が多い。実際に畑の土壌を観察すると、京都の土壌に似ているものの、乾燥した部分の形状は異なり、泥炭土の可能性が示唆された。

 

京丹波の質志鍾乳洞

/** Geminiが自動生成した概要 **/
鉄鉱石採掘跡の近くにある鍾乳洞を探検した記録。丹波地方の鐘乳洞は、かつて製鉄所で使われた鉄鉱石の産地付近に位置している。鉄鉱石は、鍾乳洞と同じく石灰岩地帯に多く存在する。鍾乳洞形成には、石灰岩を溶かす水と、空洞を作る地殻変動が必要となる。丹波地方は、地殻変動が活発な地域で、多くの鍾乳洞が存在する理由もそこにある。探検した鍾乳洞は、急斜面や狭い通路があり、内部は美しく、自然の神秘を感じさせる空間だった。鍾乳石や石筍などの鍾乳洞特有の景観も楽しめた。鉄鉱石と鍾乳洞という、一見無関係に見えるものが、地質学的な繋がりを持つことを示す興味深い探検だった。

 

長野の栄村小滝集落の米づくり前編

/** Geminiが自動生成した概要 **/
長野県栄村小滝集落の米作りに関する記事の前編。高品質の米が収穫できる理由を探るため、土壌や地質を調査。土壌は黒ボク土で、地質は玄武岩質の苦鉄質火山岩類。東日本大震災の地震で山に大きな亀裂が入り、周辺には玄武岩と思われる黒い石が散在。湧水が出ている場所の川底は赤く、鉄分が多いと推測される。この湧水が水田に流れ込んでいる。後編では、これらの要素が米作りにどう影響しているのかが解説される。

 

農研機構の日本土壌インベントリー

/** Geminiが自動生成した概要 **/
黒ボク土は、水はけが良い反面、保水力・保肥力が低い。リン酸固定も多く、肥料効率が悪い。窒素過剰吸収による生育障害のリスクもある。団粒構造の発達が悪く、乾燥すると微細な土粒子となり、風食や土埃の原因となる。物理性が悪いため、耕耘の抵抗が大きく、過剰な耕耘は土壌構造を破壊し、悪化させる。保水性・保肥力の向上には、有機物添加が有効。土壌改良資材や被覆栽培も有効策となる。適切な管理を行うことで、黒ボク土の弱点を克服し、生産性を高めることができる。

 

神奈川県の新横浜付近にある畑の色

/** Geminiが自動生成した概要 **/
新横浜付近の畑の土は黒く、南九州の黒ボク土に似ている。地質図からは非海成堆積岩類としかわからず、火山灰由来の関東ローム層であることは判別できない。周辺の山も堆積物としか記載がない。黒ボク土分布図でアロフェン質黒ボク土と確認できたが、地質図だけでは土質の予想は難しい。平野部では土壌特定の別の指標が必要となる。

 

南九州の黒ボク土

/** Geminiが自動生成した概要 **/
鹿児島市南部は、主にシラスを起源とするアロフェン質黒ボク土が広がっている。この土壌は腐植に富み、保水性・排水性が高い反面、アルミニウムの溶脱による障害リスクも抱えている。見た目は黒色で柔らかく、ふかふかした状態。サツマイモ栽培に適した土壌だが、基肥設計を最適化することで更なる品質向上が期待できる。物理性は良好だが、化学性には注意が必要。

 

牛糞堆肥が良いと広まったのは何故なのか?を考えてみる

/** Geminiが自動生成した概要 **/
関東中心に牛糞堆肥が良いとされる理由を、土壌の特性から考察した記事です。関東に多い黒ボク土は、アルミニウムイオンが溶脱しやすく根の伸長を阻害する一方、アロフェンによるAECで硝酸イオンなどを吸着します。牛糞堆肥はリン酸がアルミニウムを無害化し、硝酸塩もAECが吸着するため、黒ボク土の欠点を補う効果があります。また、牛糞堆肥の腐植はアロフェンと結合し土壌に残ります。つまり、黒ボク土と牛糞堆肥は互いの短所を打ち消し、長所を引き立て合う関係です。この相乗効果は北海道東部、東北東部、関東一帯、九州中南部といった黒ボク土地域で有効ですが、他の地域では牛糞堆肥の負の側面が目立ち、特にハウス栽培で顕著になります。加えて、牛糞堆肥は窒素肥料代替として減肥率向上にも貢献します。

 

美濃加茂の黒ボク土

/** Geminiが自動生成した概要 **/
約10年前、岐阜県美濃加茂市で師の元で栽培を学んでいた人の畑が黒ボク土だった。当時は土壌に関する知識が乏しかったが、最近飛水峡を訪れた際に美濃加茂を再訪し、改めて黒ボク土の畑を観察した。その土は非常に黒く、家畜糞主体で土作りをしていても黒ボク土でなければ到達しない黒さだと感じた。近隣のトウモロコシ畑や耕起の時期から、水田ではなく畑作の土の色だと推測。黒ボク土分布図と日本シームレス地質図で確認すると、美濃加茂市の一部は黒ボク土の元となる苦鉄質火山岩類であることがわかった。石から得られる情報量の多さを改めて実感した。

 

黒ボク土は本当に良い土なのか?後編

/** Geminiが自動生成した概要 **/
関西圏では、火山活動が少なく、黒ボク土は主に2:1型粘土鉱物が主体で、アロフェン質の黒ボク土に比べてアルミニウム障害が発生しにくい特徴があります。 一方、アロフェン質黒ボク土は火山灰の影響を強く受け、アルミニウム障害のリスクが高いです。 関西圏では、歴史的に黒ボク土での栽培が比較的容易であったため、「黒ボク土は良い土」というイメージが広まったと考えられます。 しかし、黒ボク土の性質は地域によって異なり、一概に「良い土」とは言えません。

 

黒ボク土は本当に良い土なのか?前編

/** Geminiが自動生成した概要 **/
黒ボク土は通気性・保水性に優れる反面、アルミニウム障害という問題を抱えています。本稿では、黒ボク土の形成過程を、粘土鉱物であるアロフェンと非アロフェンに着目して解説しています。黒ボク土は、玄武岩質火山灰を基材とし、アロフェン質と非アロフェン質に分類されます。非アロフェン質はベントナイトなどの2:1型粘土鉱物ですが、アロフェン質は火山ガラスから生成されるアロフェンを含みます。アロフェンの生成には玄武岩質火山灰由来の成分が関与していると考えられています。

 

陰イオン交換容量AEC

/** Geminiが自動生成した概要 **/
土壌中には陽イオン交換容量(CEC)だけでなく、陰イオン交換容量(AEC)も存在する。AECは一部の粘土鉱物、特に火山灰由来のアロフェン表面のOH<sub>2</sub><sup>+</sup>が陰イオンを保持する。しかし、AECは値が小さく、腐植などで増加せず、土壌改良の影響を受けにくい。アロフェン添加でAECは向上するが、土壌分析項目にAECが含まれないことから、実用的には重要視されていないと考えられる。

 

保肥力とは?

/** Geminiが自動生成した概要 **/
保肥力とは、土壌が肥料を保持する力のこと。陽イオン交換容量(CEC)という数値で測られ、CECが高いほど保肥力が高い。土中の粘土鉱物や腐植はマイナスの電荷を帯び、プラス電荷の肥料成分を吸着するため、CECに影響する。日本の土壌は一般的にCECが低く、肥料が流れやすい。保肥力を高めるには、バーク堆肥や腐植、鉱物資材などを活用する。保肥力が高まると、電気伝導度やpHも安定しやすくなる。


Powered by SOY CMS   ↑トップへ