ブログ内検索

プログラミング教材開発
大阪府高槻市原地区で肥料教室を開いています
検索キーワード:「プランクトン」
 

ヒトは鮭に含まれるカロテノイドを吸収できるか?

/** Geminiが自動生成した概要 **/
鮭のアスタキサンチンは、ルテインより極性が高くヒトへの吸収率が低いと考えられますが、実際には吸収されています。油性溶液にする等、吸収率を高める調理法が関係している可能性があります。もしそうであれば、オレンジのビオラキサンチンの吸収率も、調理法によって高まるかもしれません。

 

青魚にはDHAが豊富に含まれている?

/** Geminiが自動生成した概要 **/
青魚にはDHAが豊富というイメージがありますが、実は他の海産物と比べても、DHA含有量が多いわけではありません。DHA含有量は季節によって大きく変動し、これは青魚が食べる餌に影響を受けているためです。青魚自身はDHAを合成する能力は低く、食物連鎖の下位にいるプランクトンや微細藻類がDHAを合成しています。そのため、DHAを効率的に摂取するには、これらの藻類を直接摂取する方法も有効です。実際、微細藻類からDHAを抽出して商品化が進められています。

 

汚い止水で暮らすヤゴたち

/** Geminiが自動生成した概要 **/
ハッチョウトンボは、体長2cmほどの日本で最も小さいトンボとして知られています。湿地や休耕田など、日当たりが良く、水深が浅く、泥が堆積した水質の良好な止水域に生息します。 彼らは水温の上昇に伴い、4月から10月にかけて活動し、特に6月から8月にかけて多く見られます。しかし、環境汚染や開発による生息地の減少により、個体数は減少傾向にあり、絶滅危惧種に指定されています。

 

田の藻から始まる食物連鎖

/** Geminiが自動生成した概要 **/
田植え後の水田では、土中の有機物を栄養源として藻が増殖します。その藻を食べる小さな動物性プランクトンが増え始め、茶色く見える箇所が広がっています。今後は、さらに大きなミジンコ、オタマジャクシと食物連鎖が続くことが期待されます。水田は、ウンカなどの害虫も発生しますが、水生生物の豊かな生態系を育む場でもあります。

 

レンゲ米の水田に集まる昆虫たち

/** Geminiが自動生成した概要 **/
ラオスでは、魚粉の代替として安価な動物性タンパク質源の需要が高まっている。アメリカミズアブは繁殖力が強く、幼虫は栄養価が高いため、養魚餌料として有望視されている。しかし、雨季に採卵数が減少するという課題があった。本研究では、温度、湿度、日長を制御した室内飼育により、年間を通じて安定した採卵を実現する技術を開発した。適切な環境制御と成虫への給餌管理により、乾季の採卵数と同等レベルを維持できた。この技術は、ラオスにおける持続可能な養殖業の発展に貢献すると期待される。

 

アオサのグリーンタイド

/** Geminiが自動生成した概要 **/
広島の牡蠣養殖に関する話題から、戦前に人糞が養殖に使われていたという噂話に触れ、それが植物プランクトン増加のためだった可能性を、ニゴロブナの養殖における鶏糞利用と関連付けて考察している。鶏糞は窒素・リンに加え炭酸石灰も豊富で、海水の酸性化対策にも繋がる。しかし、富栄養化によるグリーンタイド(アオサの異常繁殖)が懸念される。グリーンタイドは景観悪化や悪臭、貝類の死滅などを引き起こす。人為的な介入は、光合成の活発化による弊害も大きく、難しい。海洋への鶏糞散布は、燃料コストに見合わない。最終的に、牡蠣養殖の観察を通してグリーンタイド発生の懸念を表明し、人為的な海洋介入の難しさについて結論付けている。

 

海洋では窒素、リン酸や鉄が不足しているらしい

/** Geminiが自動生成した概要 **/
海洋は窒素、リン酸、鉄不足のため微細藻類の繁殖が限られ、食物連鎖に影響を与えている。鉄は光合成に不可欠だが、海中では不足しがち。陸地からの供給が重要だが、単純な栄養塩散布では藻類繁殖は促進されない。養殖に目を向けると、鶏糞が微細藻類繁殖に有効かもしれないという仮説が提示されている。鶏糞には鉄が含まれるが、酸化鉄で有機物にキレートされていないため、還元とキレート化が必要となる。福岡の企業は鶏糞肥料でアサリ養殖に成功しており、鶏糞の有効性を示唆している。

 

広島は牡蠣の養殖が盛ん

/** Geminiが自動生成した概要 **/
広島の牡蠣養殖は、潮の満ち引きを利用した抑制棚で行われ、牡蠣の成長と環境適応力を高めている。牡蠣はプランクトンを餌とするが、近年その量が不安定で、養殖に影響が出ている。プランクトン、特に微細藻類は海の食物連鎖の基盤であり、生物ポンプとして二酸化炭素吸収に貢献する。牡蠣の殻も炭酸カルシウムでできており、同様に二酸化炭素を吸収する。養殖を通して、微細藻類の繁殖と牡蠣の成長、そして大気中の二酸化炭素濃度の関係が見えてくる。

 

水を張った田にスギナ

/** Geminiが自動生成した概要 **/
スギナが水中に生えていたことから、スギナは水没に耐性がある可能性が示唆された。スギナの地下茎は酸欠に耐えられる構造を持っており、これを「ROLバリア」と呼ぶ。ROLバリアは、外側の細胞層が酸素をバリアし、内側の細胞層に酸素を供給する。このおかげで、スギナは地下茎から伸びた根が水中に沈んでいても、健全に成長できる。さらに、この酸素過剰な段階では、その酸素の一部が周囲の土壌に放出される。この仕組みは、スギナが他の植物よりも水没した環境で競争的に優位に立つことを可能にしている。

 

露地野菜の連作の間に稲作をかます意義

/** Geminiが自動生成した概要 **/
京都市では、ネギの連作で疲弊した畑を回復させるため、一時的に水田にして稲作を行う慣習がある。水田化は、ミネラル供給や土壌粒子の変化だけでなく、肥料分の排出効果も期待されている。しかし、単なる肥料分の排出よりも重要な効果として、養分の形態変化が考えられる。 水田では、牛糞堆肥由来の窒素、リン酸、カルシウムが蓄積する。リン酸は緑藻の繁茂を促し、それを餌とするカブトエビやタニシが増殖する。これらの生物は、殻形成にカルシウムを利用し、有機物を摂取することで、水溶性無機養分を有機物に変換して堆積させる。水田から排出されるカブトエビやタニシは、カルシウムを畑の外へ運び出す役割も果たす。 つまり、水田化は養分を洗い流すのではなく、有機物として土壌に固定化することで、連作障害を軽減していると考えられる。

 

緑藻が覆った水田の数日後

/** Geminiが自動生成した概要 **/
水田に水が入り、窒素やリンが豊富になると緑藻が急増した。それを餌に動物プランクトンも増え、水は茶色くなった。数日後には水は澄み、動物プランクトンは姿を消した。代わりに現れたのはカブトエビ。彼らは水底を動き回り、藻類やプランクトンの死骸などを食べているようだ。このように、水田では栄養塩が藻類、プランクトン、カブトエビへと変化し、無機物から有機物への急速な転換が見られた。これは撹乱された生態系の典型的な個体数変化と言える。

 

春の入水後に緑藻が繁茂した

/** Geminiが自動生成した概要 **/
生産緑地の水田で、春の入水後、水面が緑藻で覆われた。水は緑色から茶色みがかり、数日後には澄んだ。都市型農業における水田の用水路の水、もしくは水田自体が富栄養状態にあるためと考えられる。窒素分とリン酸分が豊富な鶏糞を水槽に入れると緑藻が増殖し、それを動物プランクトンが追うという過去記事を参考にすると、水田の栄養を求めて緑藻、そして緑藻を求めて動物プランクトンが集まったと推測される。

 

酸素供給剤と水溶性カルシウム剤の混用はダメなのか?の続き

/** Geminiが自動生成した概要 **/
塩化石灰(CaCl₂)と過酸化水素の混用は、塩素ガス発生の可能性があり危険です。塩化石灰溶液中の塩素イオンが塩酸のように働き、過酸化水素と反応するためです。しかし、通常の農業用途では濃度が低いため、過剰な心配は不要です。とはいえ、曝露リスクを減らすには、ギ酸カルシウム肥料が推奨されます。ギ酸と過酸化水素は反応して過ギ酸を生成しますが、これはWikipediaによると殺菌力が高い一方で毒性はありません。ギ酸カルシウムは塩化石灰や硫酸石灰ほど水に溶けやすいわけではありませんが、混用による不安を解消できます。ただし、ギ酸自体にも毒性があるので、使用時は用量を守ることが重要です。

 

緑の溜池でアイリスの花が咲いていた

/** Geminiが自動生成した概要 **/
近所の溜池でアヤメ科の植物(アイリス)が咲いていた。この溜池は緑藻の増殖により緑色だが、いずれ動物プランクトンが増え茶色に変わるという。緑色は光合成による酸素放出を、茶色は呼吸による酸素消費を意味する。プランクトンの種類が変化しても微量要素の使用量はほぼ変わらないと考えられる。アイリスにとって、溜池の色変化はストレスになり得るのか、緑藻の増殖に合わせた開花戦略があるのか疑問に思った。

 

魚の養殖と鶏糞

/** Geminiが自動生成した概要 **/
微細藻類は飼料、燃料、健康食品など様々な可能性を秘めている。特に注目すべきは、鶏糞を利用したニゴロブナの養殖事例。鶏糞を水槽に入れると微細藻類が増殖し、それをワムシ、ミジンコが捕食、最終的にニゴロブナの餌となる。この循環は、家畜糞処理と二酸化炭素削減に貢献する可能性を秘めている。微細藻類の増殖サイクルを工業的に確立できれば、持続可能な資源循環システムの構築に繋がる。

 

デジカメを介して動物プランクトンを見る

/** Geminiが自動生成した概要 **/
水槽の白い粒をOLYMPUS TG-4の顕微鏡モードで撮影したらミジンコが写っていた。今まで実体顕微鏡が必要と思われていた動物プランクトンも、デジカメで撮影できる時代になった。このデジカメを使えば、植物プランクトン(微細藻類)も見ることができるのだろうか?と疑問を持ち、調べてみることにした。

 

山の鉄が川を経て海へ

/** Geminiが自動生成した概要 **/
飛騨小坂の川は、マグネシウム、カルシウム、腐植酸と結合した二価鉄を多く含み、これらが海へ流れ出て海の生物の栄養源となる。腐植酸は、森の木々が分解されて生成される有機酸で、岩石から溶け出したミネラルと結合し安定した状態で海へ運ばれる。論文によると、陸由来の鉄はプランクトンの成長に不可欠で、腐植酸がその運搬役を担う。つまり、森の光合成が活発であれば、海での光合成も盛んになり、大気中の二酸化炭素削減にも繋がる。したがって、二酸化炭素削減には森、川、海を包括的に捉える必要がある。

おすすめの検索キーワード
おすすめの記事

Powered by SOY CMS   ↑トップへ