ブログ内検索

micro:bitページ
とにかく速いブログサイトを目指す

カテゴリー : ビタミン・ミネラル・味/page-10

 

糠漬けで豊富に含まれるビタミンB1

/** Geminiが自動生成した概要 **/
糠漬けで増加するビタミンB1は、糖質やアミノ酸からのエネルギー産生に必須の補酵素チアミンの構成要素となる。チアミンは通常、食物中の酵素と結合した状態で存在し、加熱によって遊離する。米ぬかにビタミンB1が豊富なのは、種子の発芽・成長に必要なエネルギー源を確保するためである。親は子である種子に、米ぬかという形で豊富な栄養、特にエネルギー産生に不可欠なビタミンB1を蓄え、発芽時の成長を助ける。

 

糠漬けの栄養に迫る

/** Geminiが自動生成した概要 **/
糠漬けは、野菜に米ぬかの栄養が移行することで栄養価が高まる。特に糠に豊富なビタミンB1は、糠漬けによって野菜に取り込まれる。漬物体験をきっかけに、糠漬けの栄養に着目し、ビタミンB1の由来やGABAの増加といった点について考察している。GABAは乳酸菌がグルタミン酸から生成するpH調整の産物と考えられる。ビタミンB1は米ぬかから抽出されたオリザニンであり、糠漬けで摂取できる。

 

ポリフェノール鉄錯体と酸素供給剤で青枯病の発生を抑制

/** Geminiが自動生成した概要 **/
コーヒー粕を活用した青枯病抑制法が研究で示された。コーヒー粕に含まれるコーヒー酸と二価鉄がポリフェノール鉄錯体を形成し、過酸化カルシウムと反応することで強力な活性酸素(・OH)を発生させる。この活性酸素が青枯病菌を殺菌する。過酸化水素ではなく過酸化カルシウムを用いることで効果が高まる点が注目される。コーヒー酸は多くの植物に含まれ、二価鉄も腐植酸鉄として入手可能。土壌への影響は懸念されるものの、青枯病対策として期待される。この方法は土壌消毒としての効果があり、青枯病菌以外の有益な菌への影響は限定的と考えられる。

 

アーモンドはビタミンEが豊富

/** Geminiが自動生成した概要 **/
二価鉄は、生物にとって重要な役割を果たす一方で、扱いにくい性質も持っています。ヘモグロビンによる酸素運搬、酵素による代謝反応など、生命維持に不可欠な多くのプロセスに関与しています。しかし、二価鉄は容易に酸化されて三価鉄になり、活性酸素を発生させるため、細胞に損傷を与える可能性があります。そのため、生物はフェリチンなどのタンパク質を用いて鉄を貯蔵・管理し、過剰な鉄による酸化ストレスから身を守っています。また、植物は二価鉄を吸収しやすくするために、土壌を酸性化したり、キレート剤を分泌したりするなど、工夫を凝らしています。このように二価鉄は、その利用と制御のバランスが生物にとって重要です。

 

ツユクサは一次細胞壁でフェニルプロパノイドを持って何をする?

/** Geminiが自動生成した概要 **/
ツユクサ亜網の植物は、一次細胞壁にフェニルプロパノイドを持つという珍しい特徴を持つ。フェニルプロパノイドは通常、リグニン合成に利用される物質であり、二次細胞壁に存在する。銅欠乏が見られるミカン畑跡地でマルバツユクサが優先種となっていることから、ツユクサの一次細胞壁におけるフェニルプロパノイドの存在と、銅欠乏土壌との関連性が示唆される。銅はフェニルプロパノイドの重合に関与するため、ツユクサは銅欠乏土壌でも生育できるよう、一次細胞壁に重合前のフェニルプロパノイドを蓄積している可能性がある。この現象は、ツユクサが土壌環境に適応した結果なのか、偶然なのかはまだ不明だが、ツユクサが土壌の状態を示す指標となる可能性を秘めている。

 

ホンモンジゴケ(銅コケ)と出会う

/** Geminiが自動生成した概要 **/
コケを理解するには、霧吹きが必須である。乾燥したコケに霧吹きをかけると、葉が開き、本来の姿が現れる。これは、コケが維管束を持たず、水分を体表から吸収するため。乾燥時は葉を閉じて休眠状態になり、水分を得ると光合成を再開する。霧吹きは、コケの観察だけでなく、写真撮影にも重要。水分の吸収過程や葉の開閉の様子を鮮明に捉えることができる。また、種類によっては葉の色が変化するものもあり、霧吹きはコケの真の姿や生態を知るための重要なツールとなる。

 

山の鉄が川を経て海へ

/** Geminiが自動生成した概要 **/
飛騨小坂の川は、マグネシウム、カルシウム、腐植酸と結合した二価鉄を多く含み、これらが海へ流れ出て海の生物の栄養源となる。腐植酸は、森の木々が分解されて生成される有機酸で、岩石から溶け出したミネラルと結合し安定した状態で海へ運ばれる。論文によると、陸由来の鉄はプランクトンの成長に不可欠で、腐植酸がその運搬役を担う。つまり、森の光合成が活発であれば、海での光合成も盛んになり、大気中の二酸化炭素削減にも繋がる。したがって、二酸化炭素削減には森、川、海を包括的に捉える必要がある。

 

C4型光合成の二酸化炭素濃縮

/** Geminiが自動生成した概要 **/
C4植物はCO2濃縮メカニズムにより高い光合成速度を達成する。CO2は葉肉細胞で炭酸脱水酵素(CA)の働きで炭酸水素イオンに変換され、リンゴ酸として貯蔵される。このCO2濃縮により、光合成の律速となるCO2不足を解消する。CAは亜鉛を含む金属酵素で、CO2と水の反応を促進する役割を持つ。C4植物のソルガムを緑肥として利用する場合、亜鉛の供給がC4回路の効率、ひいては植物の生育に影響を与える可能性がある。この亜鉛の重要性は、畑作の持続可能性を考える上で重要な要素となる。

 

二価鉄を求めて-後編

/** Geminiが自動生成した概要 **/
この記事は、鉱泉に含まれる二価鉄の起源を探る後編です。前編では山の岩石が水質に影響を与えていることを示唆し、後編では岩石の中でも特にかんらん石に着目しています。かんらん石は鉄やマグネシウムを含む有色鉱物で、苦土やケイ酸の供給源となるだけでなく、二価鉄(Fe2+)を含む(Mg,Fe)2SO4という化学組成を持ちます。かんらん石は玄武岩に含まれ、風化しやすい性質のため、玄武岩質の山の川はかんらん石の影響を受け、二価鉄を含む水質になると考えられます。実際に、含鉄(Ⅱ)の鉱泉の上流は玄武岩質であることが地質図から確認できます。最後に、この考察に基づき、各地の調査結果を次回報告するとしています。

 

二価鉄を求めて-前編

/** Geminiが自動生成した概要 **/
植物の生育に必須な二価鉄は、過剰症のリスクもある。岐阜県飛騨小坂の巌立峡は火山由来の渓谷で、周辺には二価鉄を含む鉱泉や湧水が存在する。地元民によると、川も含めた周辺の水はマグネシウム、カルシウム、キレート化された二価鉄が多いという。巌立峡の地質は安山岩・玄武岩類からなる非アルカリ苦鉄質火山岩類である。つまり、二価鉄を多く含む川の上流の地質は火山岩である可能性が高い。下流には食味の良い米の産地があることも興味深い。

 

重要だけど扱いにくいものでもある二価鉄

/** Geminiが自動生成した概要 **/
二価鉄(Fe²⁺)は、電子を容易に受け渡しできるため、光合成を含む植物の生命活動において電子の運搬役として不可欠です。電子は物質の合成や分解、エネルギー源として重要であり、二価鉄はその供給を担います。しかし、二価鉄は酸化しやすく活性酸素を発生させるリスクがあるため、過剰症に注意が必要です。植物は、土壌中の三価鉄(Fe³⁺)を還元して二価鉄として吸収する戦略を持ち、体内で糖などから電子を得てこの還元を行います。二価鉄を肥料として利用する場合、酸化を防ぐため有機酸で包み込んだキレート鉄が用いられます。二価鉄は、リスク管理が必要だが、成長を促進する重要な要素です。

 

光合成の明反応-後編

/** Geminiが自動生成した概要 **/
光合成の明反応後編では、電子伝達系に関わる物質の詳細が説明されている。シトクロムb6f複合体にはヘム鉄を含むシトクロムが、プラストシアニンには銅が、フィレドキシンには鉄-硫黄クラスターが含まれ、それぞれ電子の運搬役を担う。これらの物質の合成にはグルタミン、マグネシウム、二価鉄、マンガン、カルシウム、硫黄などが必要となる。特に、これまで注目されてこなかった二価鉄の重要性が示唆されている。

 

銅を中心にして、リグニンを廻る植物とキノコたちの活動

/** Geminiが自動生成した概要 **/
植物は銅を利用して難分解性有機物リグニンを合成し、自らを害虫や病原菌から守る。キノコは銅を利用してリグニンを分解する。廃菌床はキノコ栽培後の培地で、キノコが生え終わった後もリグニン分解のポテンシャルが残っている。これを土壌に混ぜ込むことで、土壌はフカフカになり、植物の側根や毛細根の生育が促進される。さらに、廃菌床に残存する銅を作物が吸収することで、植物はより強くなり、病害虫への抵抗力が高まる。この一連の流れは、銅を介した植物とキノコのリグニンをめぐる攻防の延長線上にあると言える。ボルドー液のような銅製剤は、このメカニズムを応用した農薬である。

 

うどんの茹で汁は飲まないけれども、そばの茹で汁は飲む文化

/** Geminiが自動生成した概要 **/
蕎麦アレルギーの原因物質は蕎麦殻に含まれるタンパク質であり、蕎麦粉にわずかに混入することでアレルギー反応を引き起こす。蕎麦殻を蕎麦粉から完全に除去するのは難しく、製粉方法や蕎麦の種類によって混入率が変わる。蕎麦アレルギー患者は、十割蕎麦であっても殻の混入によるアナフィラキシーショックのリスクがあるため注意が必要。アレルギー症状は皮膚のかゆみ、じんましん、呼吸困難など様々で、重篤な場合は死に至る可能性もある。蕎麦殻アレルゲン除去の研究も進んでいるが、現時点ではアレルゲンの完全除去は困難であり、蕎麦アレルギー患者は蕎麦の摂取を控えることが推奨される。

 

蕎麦湯を飲んだ

/** Geminiが自動生成した概要 **/
先日もりそばを食べた後、蕎麦湯を飲み、そばの栄養素について調べてみた。そばにはルチンという物質が含まれ、抗酸化、抗炎症、抗高血圧作用がある。ルチンは茹でる際に蕎麦湯に流出する可能性がある。ルチンは二価鉄に結合し、フリーラジカルの生成を抑え、細胞の損傷を防ぐ働きがあるようだ。蕎麦湯を飲むことで、ルチンの効果を期待したい。

 

元素118の新知識から金属酵素の働きを知る

/** Geminiが自動生成した概要 **/
亜鉛はI-W系列の元素であり、農薬に含まれることで植物の生育を促進します。I-W系列の元素は相互に関わり合いながら、酵素などの生体分子を構成しています。亜鉛を含む金属酵素には、炭酸無水化酵素、アルコール脱水素酵素、カルボキシペプチダーゼなどがあります。これらの酵素は、炭酸の除去、アルコールの酸化、タンパク質の分解などに重要な役割を果たします。さらに、亜鉛はジンクフィンガータンパク質にも含まれており、遺伝子発現の制御に関わっています。植物における亜鉛欠乏は、光合成の低下、成長阻害、花の減少などの症状を引き起こす可能性があります。

 

殺菌剤の標的とSH酵素阻害

/** Geminiが自動生成した概要 **/
マンゼブなどのジチオカーバメート系殺菌剤は、SH酵素阻害を通じて殺菌活性を示す。SH酵素阻害とは、システインのSH基を活性中心とする酵素の直接阻害、補酵素CoAやリポ酸のSH基との反応による阻害、酵素反応に必要な重金属のキレートによる阻害を指す。マンゼブに含まれる亜鉛は、I-W系列の規則に従い金属酵素を阻害する。システインは硫黄を含むアミノ酸で、タンパク質の構造維持や活性酸素の除去に関わるグルタチオンの構成要素となる。ジチオカーバメートは、2つの硫黄を含むウレタン構造を指す。

 

亜鉛を含む農薬の作用をI-W系列から考えてみる

/** Geminiが自動生成した概要 **/
マンゼブは亜鉛を含む農薬で、I-W系列に基づくと、亜鉛は強力な結合力を持ちます。この亜鉛がマンガンや鉄を利用する酵素タンパク質に結合すると、酵素の作用が阻害されます。I-W系列では、結合力が強い金属ほどリグニンなど強固な物質の合成に関与しますが、結合力が強すぎると生命活動に悪影響を及ぼします。銅は生理作用を維持できる範囲で結合力が強く、リグニン合成に必須ですが、アルミニウムは強すぎて毒性があります。亜鉛は銅に次ぐ結合力を持ち、生命活動に不可欠な微量要素でもあります。マンゼブが亜鉛を含んでいるため、病原菌の酵素を阻害する効果がありますが、植物は微量要素として亜鉛を利用するため、予防薬として用いることができます。

 

リグニン合成と関与する多くの金属たち

/** Geminiが自動生成した概要 **/
植物の細胞壁成分リグニン合成は、複数の金属酵素が関わる複雑な過程である。リグニンモノマー(モノリグノール)はペルオキシダーゼ(鉄)もしくはラッカーゼ(銅)により酸化され、重合を繰り返してリグニンになる。モノリグノールはベンゼン環を持ち、フェニルプロパノイドに分類される。フェニルプロパノイドは芳香族アミノ酸であるフェニルアラニンから合成され、その前段階として光合成(マンガン、鉄が必要)や、シロヘム(鉄)が関与するアミノレブリン酸合成経路が重要となる。このように、リグニン合成は鉄、銅、マンガン等の金属、そして光合成産物が必須である。

 

I-W系列と各微量要素

/** Geminiが自動生成した概要 **/
「星屑から生まれた世界」で紹介されているアーヴィング-ウィリアムズ(I-W)系列は、微量要素の化学的性質と生物学的役割の関係性を示す。化学データでは銅イオンの陰イオンへの結合力が最も強く、他イオンと結合し不活性化させる危険性がある。一方、生物学データでは細胞内銅イオン濃度は最低で、生物が銅の毒性を回避している様子がわかる。I-W系列は、マンガンから亜鉛にかけての微量要素の必要量と過剰害の傾向を理解するのに役立ち、植物における微量要素の役割の理解を深める視点を提供する。

 

二年ものの味噌を買った

/** Geminiが自動生成した概要 **/
二年熟成味噌を購入し、一年味噌との味の違いを考察している。熟成が進むと大豆タンパク質がペプチドを経てアミノ酸に分解され、甘味が増す。特に大豆の学名(Glycine max)からグリシンが豊富と推測し、グリシンが甘味を持つアミノ酸であることから、二年味噌の甘味の強さは理にかなっていると結論づけている。また、安価な味噌は脱脂大豆を使用するため風味が劣るという情報や、大豆に含まれる油分が味噌のまろやかさに貢献していることにも触れている。さらに、味噌の熟成と発酵食品としての特性、無添加味噌のカビについても言及している。

 

植物は銅を何に活用するか?

/** Geminiが自動生成した概要 **/
生物は常に活性酸素を発生しており、これは呼吸によるエネルギー産生の副産物である。活性酸素は細胞を傷つけるため、老化や病気の原因となる。しかし、生物は活性酸素を完全に排除するのではなく、免疫や細胞の情報伝達などにも利用している。活性酸素の発生源や種類、細胞への影響、そして生物がどのように活性酸素を利用し、防御しているかを理解することは、健康維持や病気予防に繋がる。

 

銅の機能を活かした農薬、ボルドー液

/** Geminiが自動生成した概要 **/
ボルドー液は、硫酸銅と消石灰の混合溶液から成る農薬である。硫酸銅は胆礬(硫酸銅(II)五水和物)を原料とし、酸化帯に存在し水に溶けやすい。消石灰は炭酸石灰から生成され、土壌pH調整に用いられる。ボルドー液は、消石灰の石灰乳に硫酸銅を加えて作られる。酸性条件で活発になるカビ対策として、硫酸銅の銅イオンの殺菌力を利用しつつ、消石灰でアルカリ性にすることで、酸性環境を好むカビの繁殖を抑える効果が期待される。

 

乳酸菌の活性に更に迫る

/** Geminiが自動生成した概要 **/
乳酸菌はγ-アミノ酪酸以外にも様々な物質を生成する。論文「乳酸菌の生理機能とその要因」によると、乳酸菌は共役リノール酸や各種ビタミンも合成する。特に、ビフィドバクテリウム属はビタミンB群、葉酸、ニコチン酸、ビオチンなどを、ラクトコッカス・ラクティスやエンテロコッカス・フェカリスなどはビタミンKを生成する。糠漬けに含まれる乳酸菌の種類は不明だが、糠漬け内でビタミンが増えるのは乳酸菌の働きによるものと考えられる。

 

乳酸菌の活性に迫る

/** Geminiが自動生成した概要 **/
この記事では、乳酸菌がγ-アミノ酪酸(GABA)を生成するメカニズムと、その生理活性について解説しています。千枚漬けからGABA高生産性乳酸菌が発見され、グルタミン酸ナトリウム存在下でGABAを大量に生成することが示されました。GABAはグルタミン酸デカルボキシラーゼ(GAD)によりグルタミン酸から合成され、この酵素はビタミンB6の活性型を補酵素として利用します。GADは人体にも存在し、神経伝達物質としてGABAが機能しています。食品中のGABAはリラックス効果を期待して添加される例が増えており、糠漬けにも含まれる可能性があります。GABAがそのまま神経に到達するかは不明ですが、前駆体であるグルタミン酸は旨味成分として重要です。乳酸菌自身にとってGABAがどのような役割を果たしているかは、今後の研究課題となっています。

 

糠漬け時の乳酸発酵に迫る

/** Geminiが自動生成した概要 **/
酸の強さは水素イオン濃度で決まり、pH値で表される。pH値が小さいほど酸性は強く、金属を溶かす力も高まる。これは酸が金属と反応し、水素ガスを発生させながら金属イオンを生成するためである。反応のしやすさは金属の種類によっても異なり、イオン化傾向の大きい金属ほど酸と反応しやすい。塩酸などの強酸は多くの金属を溶かすことができる一方、弱酸は反応性が低い。酸が金属を溶かす反応は、電池や金属の精錬など様々な分野で利用されている。

 

先生に覚えておけと言われたジンクフィンガーを私はまだ忘れていません

/** Geminiが自動生成した概要 **/
亜鉛は様々な酵素の活性中心として機能し、細胞増殖やタンパク質合成、免疫機能など生命活動に必須の微量元素です。牡蠣などの海産物に多く含まれる理由は、亜鉛を必要とする金属酵素を多く持つためと考えられています。特に、炭酸脱水酵素は貝殻形成に、アルカリホスファターゼはリン酸代謝に、そして様々な加水分解酵素は食物の消化に必須であり、これらの酵素活性に亜鉛が不可欠です。そのため、牡蠣は体内に高濃度の亜鉛を蓄積しています。また、亜鉛結合タンパク質であるメタロチオネインも、過剰な亜鉛の毒性を抑制し、貯蔵する役割を果たしています。

 

オーガニックの野菜は美味しくなりやすい

/** Geminiが自動生成した概要 **/
天候不順による日照不足と過湿は野菜の生育に悪影響を与える。特に、過湿による土壌の酸素不足は根の伸長を阻害し、ミネラル吸収量の減少、ひいては野菜の不味さにつながる。排水性の良い畑では、このような悪影響を軽減できる。慣行農業における除草剤の使用は、土壌を固くし、水はけを悪くする要因となる。一方、オーガニック農法では除草剤を使用しないため、土壌に根が張りやすく、排水性が良くなる。結果として、根の伸長が促進され、ミネラル吸収量が増加し、美味しい野菜が育つ可能性が高まる。つまり、除草剤の使用有無が野菜の品質、ひいては収量に影響を与えるため、オーガニック野菜は天候不順時にも比較的安定した収穫と美味しさを維持できる可能性がある。

 

作物と鉄まとめ

続・続・もう、牛糞で土作りなんて止めようよの続き鉄がアミノ酸の合成や抵抗性を増す要因であるならば、二価鉄を施肥すれば秀品率が上がるんじゃないの?という考えに行き着く。二価鉄を酸化させずに施肥させる手段があるかどうかは知らないけど、二価鉄をキレートに包めば、そこそこ安定的に吸収させることが可能だと思う。だけどだよ、他の要素同様、過剰症に注意しなければならないはず。知らない間に溜まっている石灰現に、鉄過剰症は施肥をはじめて結構はやい段階で発生す

 

発生し続ける活性酸素

鉄と上手なお付き合い前回、生体内で活性酸素が発生して、侵入した菌とかを死滅させるけど、活性酸素が強力すぎて、ある程度の量の活性酸素は鎮めなければならないと記載した。これって、侵入した菌分だけ活性酸素を合成すれば良いんじゃね?という話になるけど、常に活性酸素を用意しているから、侵入した瞬間に菌を死滅させることができる。侵入してから数を菌の数をカウントして、それに合わせて活性酸素を用意していたら、活性酸素を生み出す過程にも複雑な制御が必要になるし、一斉に菌が入って

 

鉄と上手なお付き合い

鉄という物質がある。鉄をイオン化させると、Fe2+とFe3+という2つの形をとる。酸化鉄(Ⅱ)や酸化鉄(Ⅲ)という形で今までよくでてきたよね。還元剤としてのシュウ酸?これは1つの電子を放出しやすく受け取りやすいという鉄イオンの大きな特徴らしい。放出しやすく受け取りやすいということは、どこかで発生した電子を保管しやすく、どこかで使いやすいという意味を示している。だから、(画像:5-アミノレブリン酸の農業利用に関する技術開発 Regulation

 

キノコが行う自身の再構築

ビタミンDの前駆体を体に組み込むキノコたち先日、キノコのエルゴステロールについて調べたいと思い、キノコについての論文をいろいろと読んでいたら、下記のタイトルの論文を発見した。きのこ類が生産する糖質加水分解酵素 木材保存 Vol.39-2(2013)この論文には、キノコが木材を分解する際に使用される酵素(ただしリグニンは除く)が記載されていた。その中でふと目についたのが、きのこ類のような菌類は菌糸生長する際に,キチナーゼ,β-1,3グルカナーゼ,&beta

 

ビタミンDの前駆体を体に組み込むキノコたち

天気が良いので、シイタケを天日干しするってよキノコを天日干しするとビタミンDが増えるらしい。実際に起こっている反応は、プロビタミンDであるエルゴステロールが光化学性の反応によってビタミンDに変化するかららしい。ビタミンDというのは、人体でカルシウムの結合を高めるビタミンということになっている。で、ここで疑問になるのが、廃榾木に群がる菌群シイタケってカルシウムの吸収を積極的に行いタチなの?キノコはカビなので、カルシウムでがちがちに固めるイメー

 

天気が良いので、シイタケを天日干しするってよ

シイタケの天日干しをしていた。シイタケを天日干しすると風味や栄養価が上がるらしい。他の食材も天日干しをすると風味や栄養価が上がるものがある。こんな生育した環境から切り離された状態でも、健気にいずれ使うであろう成分を合成して蓄えているのか?なんて思ったので調べてみた。風味が上がる要因の大半が、干すことによって水分が減り、養分が濃縮されるかららしいが、それ以外にビタミン量の絶対量が増えるという反応があるらしい。紫外線照射条件の違いに

 

有機質肥料としての米ぬか

米ぬかを入手した。米ぬかは肥料として販売されているのはなかなか見ないけど、栽培では米ぬかは有機質肥料として重宝する。保証されている成分として、N : P : K = 2.5 : 6 : 2他に苦土(マグネシウム)が1.5ぐらいと多く含まれ、微量要素の成分が程よく入っているのが特徴。※ここでいうNはタンパク質のはず肥料成分の偽装に関する意見について糖分、脂肪分が多く、ビタミンも程よく入っている。食材としての米ぬかの話だが、カルシウムが不足している

 

苦味を感じるのは生命の危機

植物性の有機物で栽培した葉物野菜には苦味が無いのはなぜでしょう?という話題になった。一般的に言われるのは、葉物野菜中に含まれる硝酸態窒素が少ないからというで、硝酸態窒素の多さが苦味に何らかの影響を与えている可能性がある。でだ、ここでいう硝酸態窒素というのは一体何なのか?なんだけど、肥料の中に含まれる窒素として、・アンモニア態窒素・硝酸態窒素・有機態窒素がある。他にも区分があるかもしれないけれども、大雑把にまとめてみる

 

微生物資材に頼る前に発酵食品を学ぶ

日常で発酵のお世話になっていることが多く、発酵食品を好んで食べるという方も多い。そんな中で、発酵食品として優秀だから、発酵に関与した微生物が土壌で頑張ってくれたら有用じゃね?という意見が多くあり、その手の微生物資材も多く販売されている。しばらく後に出てくる話だけど、微生物資材を入れてるけど、これってこの資材の中にいる微生物のおかげなの?資材投入の費用対効果はどうなの?という意見もちらほらと見かける。これから記載する内容はあくまでも個人的な意


Powered by SOY CMS  ↑トップへ