ブログ内検索

micro:bitページ
とにかく速いブログサイトを目指す

カテゴリー : 植物の形/page-16

 

サクラハンドブック

/** Geminiが自動生成した概要 **/
春の花見で、本当に桜をじっくり見ているだろうか? 本書は、品種改良された桜の多様性を知るための入門書「サクラハンドブック」の紹介。宴会に興じるだけでなく、多様な桜の形状に目を向けてほしいという著者の思いが込められている。例えば、下鴨神社のヤマザクラは、開花と同時に紅色の葉も展開する。ソメイヨシノとは異なる、原種に近いヤマザクラの美しさに触れ、桜への新たな視点を提案している。

 

茎を短くしておくという選択

/** Geminiが自動生成した概要 **/
春目前の寒空の下、地面に張り付くロゼット型の植物が目立つ。極端に短い茎と重なり合う大きな葉は、冬を生き抜くための戦略だ。背の高い草が繁茂していない時期だからこそ、地面すれすれで光を効率的に浴びることができる。さらに、葉の重なりは熱を閉じ込め、光合成を活性化させる効果もある。ロゼット型は、冬に適応した効率的な形状であり、その姿には生命の力強さが感じられる。

 

サクラサクにはちとはやい

/** Geminiが自動生成した概要 **/
北野天満宮は、学問の神様・菅原道真公を祀る神社で、梅との縁が深い。道真公が太宰府へ左遷される際、愛した梅の木が後を追って飛来したという「飛梅伝説」が有名。境内には、道真公を偲び各地から献上された約1500本もの梅が植えられており、早咲きから遅咲きまで、紅白様々な梅の花が2月上旬から3月下旬まで順次開花する。毎年2月25日には梅花祭が行われ、野点や琴の演奏など、華やかな催し物で春の訪れを祝う。紅梅と白梅が咲き乱れる境内は、訪れる人々に美しさと安らぎを与えている。

 

ナズナの果実の型の同義遺伝子

/** Geminiが自動生成した概要 **/
ナズナの果実の型は、同義遺伝子によって決定される。ハート型とやり型の遺伝子は二対の対立遺伝子(A/a、B/b)を持ち、AとBは同じ働きをする。どちらか一方でも優性遺伝子があればハート型になり、両方が劣性の場合のみやり型となる。つまり、AABB、AABb、AaBB、AaBb、AAbb、AaBb、Aabb、aaBB、aaBbはハート型、aabbのみやり型となる。メンデルの法則における9:3:3:1の分離比は、この場合、ハート型(15):やり型(1)となる。多くの遺伝子は、このように複数の遺伝子が同じ形質に関与する同義遺伝子で、致死性を回避し生命維持に貢献している。

 

メンデルの法則を二対で見てみる

/** Geminiが自動生成した概要 **/
メンデルの法則は単純だが、生物の形質は複雑で、他の遺伝子による補完作用があるため、法則通りに現れないことが多い。ナズナの果実の形はハート型:やり型=15:1で、二対の対立遺伝子で説明できる。エンドウの例で、形(丸A、しわa)と色(黄B、緑b)の二対の対立遺伝子を持つAaBb同士を交配すると、丸黄:丸緑:しわ黄:しわ緑=9:3:3:1に現れる。合計は16となり、ナズナの果実の分離比15:1の合計16と一致するため、二対の対立遺伝子が関与していると考えられる。

 

一対の対立遺伝子のメンデルの法則

/** Geminiが自動生成した概要 **/
メンデルの法則に基づき、エンドウの丸い豆(A)としわの豆(a)の遺伝を例に解説。丸はAAとAa、しわはaaで表現される。AAとaaを交配すると子は全てAa(丸)になる。Aa同士を交配すると、孫世代はAA、Aa、Aa、aaとなり、丸としわの比率は3:1となる。様々な交配パターンが存在するが、突然変異や人為交配がない場合、ハーディー・ワインベルグの法則により、豆の形質の発生頻度はAa同士の交配結果に基づくとされる。この法則を踏まえ、次回ナズナの莢の形状について考察する。

 

やり型のナズナ探しの前に優性の法則

/** Geminiが自動生成した概要 **/
ナズナの果実の形質比15:1の謎を解くため、集団遺伝学とメンデルの法則を基に解説が始まる。メンデルの法則では、エンドウの種子の形を例に、遺伝子が対になっていること、丸(A)としわ(a)のように表現されること、優性の法則によりAaの組み合わせでは優性である丸が発現することが説明される。今回は優性の法則に焦点を当て、次回以降に具体的な法則とナズナの果実の謎に迫る。

 

初春の対立遺伝

/** Geminiが自動生成した概要 **/
春の訪れとともにナズナ(ペンペン草)が花を咲かせ、三味線型の果実をつけている。この形は二対の対立遺伝子によって決定され、1/16の確率で異なる「やり型」が現れる。実際に畑で異なる形のナズナを探してみたところ、理論上は16株に1株の割合で見つかるはずだったが、30株ほど探してやっとやり型の果実を見つけることができた。確率はあくまで確率であり、探索には予想以上に時間がかかった。

 

根付きの葉物、根をみて味を予想する

/** Geminiが自動生成した概要 **/
根元の状態からほうれん草の味を推測する話。 茂った葉とは裏腹に、根は股根で初期生育時に肥料焼けを起こしたと推察。地上部の成長が良いことから、栽培期間中も強い肥料を与え続けたと推測し、味が悪いと予想。 実際、根の形状から肥料の施し方が推測され、味にも影響が出ることが示唆された。 根の状態を見ることで、栽培方法や味をある程度予測できるという驚きが綴られている。

 

小さな枝に満開の花

/** Geminiが自動生成した概要 **/
京都の庭園で、土に挿した短い枝に満開の花が咲いているのを見つけた。花を咲かせるのは木にとって大きな労力なのに、枝だけで咲いているのは不思議だ。近づいて見ると、リアルでみずみずしく、本物だと確認できた。この生命力あふれる枝のエネルギーに感嘆し、何かに活用できないかと考えたくなる。栽培者はきっとこのエネルギーを利用するために、たくさんの枝を土に埋めているのだろう。

 

気孔の日々のお仕事

/** Geminiが自動生成した概要 **/
葉の裏にある気孔は、ガス交換だけでなく、蒸散による葉内浸透圧の上昇を通じて土壌からの吸水を促す重要な役割を担う。葉の水分量が多い時は気孔から蒸散し浸透圧を高め、少ない時は気孔を閉じて蒸散を防ぐ。しかし、葉周辺の湿度が高いと蒸散が抑制され、光合成に必要なミネラルを土壌から吸収できなくなる。つまり、光合成能力は十分でも、材料不足に陥る可能性がある。この問題に対処するには、単なる水やりや追肥だけでなく、蒸散を促進する工夫が必要となる。湿度が低すぎても蒸散過多で気孔が閉じるため、適切な湿度管理が施肥効果を高め、秀品率向上に繋がる。

 

大抵のことは目に見えること以上に裏側が大事であることが多い

/** Geminiが自動生成した概要 **/
この記事では、植物の葉の裏に存在する気孔の役割について考察しています。光合成に必要な二酸化炭素は気孔から吸収されますが、それでは水が根に溜まり続け、茎や葉まで届かないという矛盾が生じます。植物は浸透圧の差を利用して根から吸水しますが、根より上の部分の浸透圧は考慮されていません。このままでは根に水が溜まる一方です。そこで、気孔には二酸化炭素の吸収以外にも重要な役割があると考えられます。記事は続くことを示唆しており、その役割については次回以降に説明されるようです。関連記事として「あそこの畑がカリ不足」が挙げられていますが、本文中にはカリウムに関する直接的な記述はありません。ただし、浸透圧の調整にはカリウムが重要な役割を果たすことが一般的に知られています。

 

表があれば裏もある。

/** Geminiが自動生成した概要 **/
針状葉は、平たい葉と比べて不利に見えるが、狭い空間で効率的に光合成できるよう表面積を最大化している。厳しい環境に適応した形状と考えられる。しかし、平たい葉の裏側にある気孔のように、針状葉の裏表の機能分担、特にガス交換の仕組みはどうなっているのかという疑問が提示されている。全ての植物が針状葉にならないのは、平たい葉にも利点があるからである。

 

細く、時には斜めを向くこと

/** Geminiが自動生成した概要 **/
マツの葉の細さと斜め方向への成長は、光合成効率の向上に貢献している。針葉樹は一般的に針状の葉を持つことで葉同士の遮光を防ぎ、効率的な光合成を行う。しかし、ウォレマイ・パインのような幅広の葉を持つ古代針葉樹は、下の葉を覆ってしまうため効率が低い。一方、現代のマツは葉が細く、斜め上向きに成長することで、下の葉にも光が当たるようになり、すべての葉が満遍なく光合成を行える。これは、進化による光合成効率の向上を示す興味深い例である。

 

そろそろ初春のバラ園で

/** Geminiが自動生成した概要 **/
初春の中書島バラ園は、バラの季節ではなく、ほとんどの株が深く剪定されていた。写真からは、思い切った剪定にも関わらず、新しい芽が吹き出している様子が確認できる。作者は、この大胆な剪定は経験に基づくものだと感嘆している。バラ園は現在、次の開花シーズンに向けて準備中であることが伺える。

 

長い歴史の中で小さく細かくなっていった

/** Geminiが自動生成した概要 **/
ジュラシックツリーと呼ばれるウォレマイ・パインは、一見ヒノキのような針葉樹だが、近づいて観察するとシダ植物に似た細かい葉を持つ。一般的な針葉樹と比較すると、その葉の細かさは際立っている。著者は、この微細な葉は、長い歴史の中でウォレマイ・パインが様々な困難を乗り越えるための進化の結果だと推察する。光合成の効率は下がったかもしれないが、それ以上に得られたもの、乗り越えられたものがあったはずだと考え、その理由について思いを馳せている。

 

蝋梅(ロウバイ)は梅の仲間ではないんだって

/** Geminiが自動生成した概要 **/
蝋梅は、梅に似た時期に咲き、名前に「梅」と付くが、実は梅の仲間ではない。写真からも分かるように、花弁の様子や雄蕊の太さ、本数が梅とは全く異なる。実際、蝋梅はバラ科ではなく、ロウバイ科に属し、クスノキの仲間である。開花時期が梅と同じため、「蝋梅」と名付けられたと推測される。

 

常に上を向いて目立てば良いってもんじゃない

/** Geminiが自動生成した概要 **/
府立植物園の温室で、鮮やかな南国の花々に囲まれる中、目を引く吊るされた花を見つけた。葉の茂みに埋もれることなく、ぴょんと伸びた先に花を咲かせていたが、よく見ると蕊のある部分が下向きになっている。上向きに咲く多くの花と異なり、この花は下向きに咲くことで、特定の生物を惹きつける戦略を持っているようだ。南国での経験がないため、どんな生物が訪れるのか想像もつかないが、生き残るための独自の進化を遂げた花の姿に感銘を受けた。

 

美しさを追求するなら、こじんまりとさせることも手かもしれない

/** Geminiが自動生成した概要 **/
北野天満宮は菅原道真を祀る神社で、梅の名所として知られる。特に品種改良された梅は、花が密集していることが特徴。原種に近い梅と比較すると、八重咲きや花弁の色だけでなく、節間の長さや蕾の数に違いが見られる。矮化によって節間を短くし、一つの節から複数の蕾を出すことで、花が密に集まり、より美しい印象を与える。これはポインセチアにも見られる傾向であり、人々は梅の美しさを追求するために、こじんまりと密に咲く品種を好んで育ててきたと考えられる。

 

北野天満宮、管原氏が愛した梅の花

/** Geminiが自動生成した概要 **/
北野天満宮は、学問の神様・菅原道真公を祀る京都の神社。道真公が愛した梅の木が多数植えられており、特に梅苑の観梅は有名。道真公左遷の際、梅を慕う歌を詠んだ故事にちなみ、境内には紅白様々な品種が咲き誇る。創建は947年とされ、豊臣秀吉による太閤塀の寄進など歴史的変遷を経て現在に至る。全国に約1万2000社ある天満宮・天神社の総本社であり、受験シーズンには多くの参拝者が訪れる。

 

ジャガイモを割ったら中が染まってた

/** Geminiが自動生成した概要 **/
もらったジャガイモを切ったら、中心部が褐色に変色していた。これは「褐色心腐」という生理障害で、ジャガイモの肥大期に高温乾燥状態におかれると発生する。つまり、夏から秋にかけて雨が少なく灌水しない、または土壌の保水性が低い場合に起こりやすい。ジャガイモ栽培では堆肥をあまり使わないため、乾燥しやすい。しかし、土を草で覆うことで乾燥を防げる。過去にジャガイモ畝にヘアリーベッチを植えると秀品率が向上するという結果を見たが、今回の褐色心腐の発生抑制にも効果があるかもしれない。 (ただし、写真の症状が褐色心腐ではない可能性もある。)

 

ポインセチアの花はどこ?

/** Geminiが自動生成した概要 **/
ポインセチアの赤い部分は花ではなく苞葉。実際の花は中心の小さな黄緑色の部分。矢印で示された箇所がそれにあたる。花はエネルギー消費が大きいため、ポインセチアは花を小さくし、苞葉に虫を惹きつける役割を担わせることで効率化を図っている。目立つことが重要なので、役割分担でエネルギー消費を抑えていると言える。

 

八重咲きは大事な雄蕊を代償として咲き誇る

/** Geminiが自動生成した概要 **/
八重咲きは、雄蕊が花弁に変異することで花弁の数が増える現象。ツバキは特に八重咲きになりやすい。雄蕊が多い品種では、本来雄蕊があるべき位置から花弁が発生しているのが確認できる。カーネーションや八重桜も同様の変異によるもの。この八重という変異は園芸史において重要な要素であり、花を鑑賞する上で知っておくべきポイントである。

 

花は受粉するためにあるのではないかと

/** Geminiが自動生成した概要 **/
寒椿の八重咲きの花を見て、著者は花の本来の目的である受粉について疑問を呈している。通常の椿は雄蕊が多く八重咲きになりやすいが、観察した寒椿は花弁が過剰に発生しており、雄蕊の存在は確認できない。仮に雄蕊があったとしても、花弁が邪魔をして受粉は不可能だろうと推測している。受粉できないにも関わらず、なぜこれほどまでに花弁を発達させて花を咲かせるのか、その目的について著者は疑問を抱き、本末転倒だと感じている。

 

ギザギザは調整され過ぎた結果

/** Geminiが自動生成した概要 **/
葉の縁の形状は、成長の調整機構の働きによって決まる。波打つ葉は調整不足、ギザギザの葉(オークリーフ)は調整過剰の結果と考えられる。本来は単純な丸い葉になるはずが、局所的な調整の過剰によって切れ込みが生じ、オークリーフのような形状になる。つまり、一見シンプルな形の葉も、実は緻密な調整機構によって形成されている。このことから、複雑な形状を持つカエデの葉も、様々な調整の過程を経て形成されたと推測できる。

 

波打ちは調整されなかった結果

/** Geminiが自動生成した概要 **/
ポインセチアの苞葉の波打ちについて、縁の細胞を細胞死させて調整する機構の欠損が原因となる品種がある。通常、葉や花弁は成長初期に縁が余分に伸長し、後に調整される。しかし、この調整機構が壊れた「ちりめん型」では、波打った形状になる。これは調整されなかった変異であり、逆に調整されすぎた変異も存在する可能性がある。

 

捻じれという綺麗さ

/** Geminiが自動生成した概要 **/
植物の根は左巻きに成長し、その影響で地上部もねじれる。矮化品種ではねじれの周期が短くなる傾向がある。ポインセチアのバーロック型は苞葉が下向きで、全体にねじれが見られる。このねじれは花の美しさに繋がっており、江戸菊など他の園芸作物でも見られる。品種改良においてねじれを意識した例は聞いたことがないが、園芸史を深く理解するにはねじれも重要な視点となる。

 

白い下地に着色していくもの

/** Geminiが自動生成した概要 **/
ポインセチアは育種が盛んで、多様な品種が存在する。特に色のバリエーションが豊富で、白い下地をベースに赤い色素の量でピンクから真紅まで変化する。また、部分的な脱色による斑入りも存在する。これは色素が欠損している部分であり、白い色素が発現しているわけではない。同様の現象はチューリップの花弁でも見られるが、ポインセチアの場合は苞葉という葉で起こっている点が異なる。

 

矮化で背丈を短くするということ

/** Geminiが自動生成した概要 **/
矮化は農業において重要な役割を果たす。矮化とは、植物の節間(葉の付け根の間)が短くなる変異のこと。ポインセチアなど園芸品種の小型化にも利用される矮化は、作物の収穫効率向上に大きく貢献してきた。例えば、大豆の原種とされるツルマメは4m近くまで成長するが、矮化により現在の50cm程度のサイズになったことで収穫の労力が大幅に軽減された。これにより、高栄養価の大豆を効率的に生産できるようになった。他の作物においても矮化による作業効率の向上が見られる。

 

イチョウの黄葉とカエデの紅葉

/** Geminiが自動生成した概要 **/
筆者は、イチョウの葉の縁が緑のまま残ることに疑問を抱き、紅葉するカエデと比較している。カエデは枝の先端や葉の外側ほど紅色が強く、何らかのアピールをしているように見える。一方、イチョウは縁が緑のまま黄葉する。この違いから、カエデのような葉の外側からの色の変化は進化における生存戦略として獲得された形質であり、イチョウの黄葉の仕方はそれと異なる戦略に基づいていると推察している。

 

イチョウの黄化は我々に何かを語りかける

/** Geminiが自動生成した概要 **/
イチョウの黄葉は縁からではなく中央から始まる。養分回収時の一般的な葉の黄化は縁から始まるため、この現象は特異である。イチョウは生きた化石で、精子と卵子で受精するため、昆虫や鳥を引き付けるための模様とは考えにくい。中央から黄化する理由は不明だが、被子植物に見られる縁からの黄化は植物の進化における大きな進歩だったのかもしれない、と考察している。

 

幽玄の美の伊勢菊

/** Geminiが自動生成した概要 **/
伊勢菊は日本の三大珍花の一つで、著者はその特異な形状に強い興味を持つ。細く不安定な舌状花は個々の秩序を持たないように見えるが、全体としては調和のとれた美しさを持つ。江戸菊にも規則性はあるが、伊勢菊は花弁の向きに規則性がない。著者は、このような形状がどのようにして生まれたのか、その変異の過程に思いを馳せている。古典菊には大輪もあるが、著者は大きさや華やかさよりも、伊勢菊のような独特の形状に魅力を感じている。

 

丁子菊という別の道を選んだ菊

/** Geminiが自動生成した概要 **/
新宿御苑で見た丁子菊は、他の菊とは異なり、中心部の筒状花が目立つ。一般的な菊は舌状花の美しさを追求しているが、丁子菊は筒状花に焦点を当てている。菊は頭状花序と呼ばれる集合花で、中心の筒状花と外側の舌状花から成る。肥後菊、嵯峨菊、江戸菊は舌状花の美を追求した例だが、丁子菊は筒状花の美を追求した珍しい品種と言える。このように、集合花の育種は、どちらの花に焦点を当てるかで大きく姿を変える。

 

江戸菊は江戸の華

/** Geminiが自動生成した概要 **/
新宿御苑の菊花壇展で見た江戸菊は、外側の花弁が太く内側に丸まるのが特徴。中心部のふさふさした部分は花弁に包まれている。嵯峨菊と似た形状だが、外側の花弁が太い点が異なる。肥後菊、嵯峨菊、江戸菊は、花弁の形や長さ太さの違いで個性を出し、育種家のポリシーが反映されているように感じる。

 

赤い葉は上にいる鳥への意思表示にみえる

/** Geminiが自動生成した概要 **/
ニンジン畝で葉の先端が赤くなっている。リン酸欠乏、マグネシウム欠乏などの可能性があるが、10月下旬なので低温障害は考えにくい。この鮮やかな赤色は、鳥に向けてのアピールに見える。鳥は赤色を認識しやすく、糞にはリン酸が豊富に含まれる。つまり、赤くなった葉は、鳥を呼び寄せて糞を落としてもらい、リン酸欠乏を解消しようとする植物の意思表示ではないかと推測。実際に、鳥へのメッセージが通じることを期待し、ニンジンから少し離れた場所に鶏糞を撒いて様子を見ることにした。

 

緑肥を使いこなす前に

/** Geminiが自動生成した概要 **/
緑肥の効果は有機物投入だけでなく、植物の根の構造にも関係する。単子葉植物は多数の太い不定根を持ち、双子葉植物は中心の主根から側根を出す。単子葉のソルゴーは土壌の団粒構造形成に優れているが、双子葉のクローバーやヒマワリも緑肥として利用され、状況によってはソルゴー以上の効果を発揮する。緑肥を使いこなすには、単子葉と双子葉の根の違いを理解することが重要である。

 

下鴨神社にある遅咲きの萩

/** Geminiが自動生成した概要 **/
下鴨神社の遅咲きの萩を観察したところ、一部の枝では先端だけでなく中ほどまで花が咲いていたが、中央部は花が咲いていなかった。特に、上の枝に覆われて日陰になっている部分では花が咲いておらず、光量が開花範囲に影響しているのではないかと推測している。梨木神社の萩まつりへのリンクもある。全体的には、萩の開花と光量の関係に着目した観察記録となっている。

 

背丈が整っていることのすごさと違和感

/** Geminiが自動生成した概要 **/
田んぼの稲穂はどれも背丈が揃っている。肥料が均一でもここまで揃うのは不自然で、人の育成環境を均一化してもこうはならない。これは収量や耐病性だけでなく、背丈の揃いやすさも選抜基準にしているからだ。背丈が揃うと機械での管理が容易になる。しかし、耐病性を持つ稲ばかりを選抜していくことは、多様性を失い、新たな病気が発生した際に壊滅的な被害を受けるリスクを高める可能性があるため、危険ではないかと筆者は危惧している。

 

バジルから不定根が発生した

/** Geminiが自動生成した概要 **/
陽春園で購入したバジルの苗が輸送中に折れ、水に挿しておいたら不定根が発生した。不定根は茎の途中から出るもので、切断面の一番下からは出ない。これは植物学的に重要な点で、挿し木では主根のようなしっかりとした根は発生しない。バジルは例外的に挿し木で容易に増やせるが、桜のような木では主根がないとしっかり根付かず、挿し木は難しい。この挿し木の難しさについては、後日改めて詳しく解説したい。


Powered by SOY CMS  ↑トップへ