ブログ内検索

micro:bitページ
とにかく速いブログサイトを目指す

カテゴリー : 農薬/page-2

 

藍藻から発見された植物の芳香族アミノ酸等の合成を阻害する糖

/** Geminiが自動生成した概要 **/
藍藻の一種 *Synechococcus elongatus* が産生する希少糖7-デオキシセドヘプツロース (7dSh) は、植物のシキミ酸経路を阻害する。シキミ酸経路は芳香族アミノ酸や特定の植物ホルモンの合成に必須であるため、7dShは植物の生育を阻害する。この作用は除草剤グリホサートと類似しており、シロイヌナズナを用いた実験で生育阻害効果が確認された。7dShは酵母など他の生物にも影響を与える。微細藻類である藍藻の研究はこれまで困難だったが、急速な研究進展により、7dShのような新規化合物の発見につながり、除草剤開発などへの応用が期待される。

 

シアナミドは土壌の細菌にも効果があるのか?

/** Geminiが自動生成した概要 **/
シアナミドは石灰窒素の主成分で、土壌消毒効果が期待される。酵母のような真核生物だけでなく、細菌にも効果があることが示唆されている。石灰窒素は酸化還元酵素や脱水素酵素を阻害することで、幅広い微生物に影響を与える。ヘアリーベッチはシアナミドを分泌するとされているが、根粒菌との共生など、根圏微生物への影響は限定的であると考えられる。つまり、シアナミド分泌は選択的に行われている可能性があり、そのメカニズムの解明が今後の課題となる。

 

酵母でのアセトアルデヒドの耐性

/** Geminiが自動生成した概要 **/
石灰窒素の成分シアナミドは生物にアセトアルデヒドを蓄積させ、毒性を示す。酵母はこの毒性に対し、①NADPHを用いたオレイン酸増加、②グルタチオンによるアセトアルデヒド回収、という二つの防御策を持つ。①は糖からのエネルギー産生を抑制し、代わりにNADPH合成経路を活性化、オレイン酸を増やすことで耐性を得る。②はグルタチオンがアセトアルデヒドと結合し無毒化する。アセトアルデヒドはタンパク質とも結合し、重要な生理機能を阻害、死滅に至る可能性もある。

 

石灰窒素の作用機序

/** Geminiが自動生成した概要 **/
ヘアリーベッチの土壌消毒効果のメカニズムを探るため、その根から分泌されるシアナミドの作用機序に着目。シアナミドは石灰窒素の有効成分で、人体ではアルデヒドデヒドロゲナーゼを阻害し、アセトアルデヒドの蓄積による悪酔いを引き起こす。アセトアルデヒドはDNAと結合し、タンパク質合成を阻害することで毒性を発揮する。この作用は菌類にも影響を及ぼし、土壌消毒効果につながると考えられる。

 

土壌消毒として緑肥の栽培はどうか?

/** Geminiが自動生成した概要 **/
ヘアリーベッチは、窒素固定に加え、アレロパシー作用で雑草を抑制する緑肥です。根から分泌されるシアナミドが雑草種子の休眠を打破し、時期外れの発芽を促して枯死させる効果があります。シアナミドは石灰窒素の成分であり、土壌消毒にも利用されます。裏作でヘアリーベッチを栽培すれば、土壌消毒と土壌改良を同時に行え、後作の秀品率向上に繋がると考えられます。さらに、ヘアリーベッチは木質資材の分解促進効果も期待できるため、播種前に安価な木質資材をすき込むことで、土壌改良効果とシアナミド分泌量の増加が期待できます。この手法は従来の太陽光と石灰窒素による土壌消毒より効果的かもしれません。今後の課題は、シアナミドの作用点と、効果のない土壌微生物の特定です。

 

青枯病の原因菌について調べてみた

/** Geminiが自動生成した概要 **/
作物の病原性細菌は、クオラムセンシング(QS)と呼ばれる細胞間コミュニケーション機構を用いて、個体数密度に応じて遺伝子発現を制御し、病原性を発揮する。低密度時は単独で行動し、高密度になるとQSシグナル分子を分泌、受容体で感知することで集団行動を開始する。この集団行動により、毒素産生やバイオフィルム形成などの病原性因子を協調的に発現、植物に感染・増殖する。QS阻害は、病原性細菌の感染制御における新たな戦略として期待されており、シグナル分子合成・分解酵素阻害、シグナル分子アナログによる受容体阻害などが研究されている。これらの手法は、薬剤耐性菌対策としても有効である可能性がある。

 

ポリフェノール鉄錯体と酸素供給剤で青枯病の発生を抑制

/** Geminiが自動生成した概要 **/
コーヒー粕を活用した青枯病抑制法が研究で示された。コーヒー粕に含まれるコーヒー酸と二価鉄がポリフェノール鉄錯体を形成し、過酸化カルシウムと反応することで強力な活性酸素(・OH)を発生させる。この活性酸素が青枯病菌を殺菌する。過酸化水素ではなく過酸化カルシウムを用いることで効果が高まる点が注目される。コーヒー酸は多くの植物に含まれ、二価鉄も腐植酸鉄として入手可能。土壌への影響は懸念されるものの、青枯病対策として期待される。この方法は土壌消毒としての効果があり、青枯病菌以外の有益な菌への影響は限定的と考えられる。

 

食用キノコから発見されたストロビルリン

/** Geminiが自動生成した概要 **/
食用キノコ由来のストロビルリン系農薬アゾキシストロビンは、真核生物のミトコンドリア複合体Ⅲを阻害しATP合成を阻害することで殺菌効果を発揮する。しかし、代替酵素の存在により完全な死滅は難しく、植物の防御反応であるフラボノイドによる活性酸素除去阻害のサポートが必要となる。つまり、ストロビルリン系農薬は単体での殺菌効果は限定的で、植物の免疫力を高めるポリフェノール合成促進や、植物体内での活性酸素除去を担うグルタチオンとの併用により効果を発揮する。バクテリアやアーキアには効果がない点にも注意が必要である。

 

ネギのべと病もストラメノパイル

/** Geminiが自動生成した概要 **/
ネギのべと病もショウガの根茎腐敗病と同様に、卵菌類が原因である。ネギのべと病には亜リン酸カリの葉面散布が有効だが、ショウガの根茎腐敗病にも効果があるか検証したい。両者とも卵菌類が原因であるため、亜リン酸カリは同様の予防効果を持つと期待される。ただし、ショウガの場合は病気が発生する根茎への葉面散布の効果が不明であるため、その点が課題となる。

 

乳酸菌バクテリオシン

/** Geminiが自動生成した概要 **/
乳酸菌バクテリオシンは、近縁種の細菌に対して効果的な抗菌ペプチドです。安全で、耐性菌出現のリスクも低いことから、食品保存料としての利用が期待されています。近年、様々な構造のバクテリオシンが発見され、遺伝子操作による生産性の向上や、より広範囲の抗菌スペクトルを持つバクテリオシンの開発が進められています。医療分野への応用も研究されており、病原菌感染症や癌治療への可能性が探られています。しかし、安定性や生産コストなどの課題も残されており、今後の研究開発が重要です。

 

軟腐病対策としての乳酸菌由来の農薬

/** Geminiが自動生成した概要 **/
乳酸菌由来の農薬は、ハクサイの軟腐病対策に有効である。その作用機序は、乳酸菌自体による抗菌作用ではなく、植物側の抵抗性誘導と軟腐病菌との競合にある。乳酸菌をハクサイに散布すると、植物体内でサリチル酸等の防御機構が活性化される。同時に、葉面での乳酸菌密度の増加は、軟腐病菌との栄養や空間をめぐる競合を引き起こし、病原菌の増殖を抑制する。この農薬はグラム陽性細菌である乳酸菌を利用するため、グラム陰性細菌用の農薬との併用も可能。さらに、乳酸菌の増殖を促進するアミノ酸肥料との併用で効果向上が期待される。

 

鱗翅目の幼虫が真っ白になっていたんだって

/** Geminiが自動生成した概要 **/
蚕糸・昆虫バイオテック 82 (3)に掲載された「昆虫の病原糸状菌抵抗性機構と昆虫病原糸状菌の昆虫への感染機構」は、昆虫と病原糸状菌の攻防について解説している。昆虫は、体表の外骨格や抗菌ペプチド、メラニン化反応などで菌の侵入を防ぎ、侵入された場合は細胞レベルでの免疫反応で対抗する。一方、病原糸状菌は、昆虫の外骨格を分解する酵素や毒素を分泌し、免疫反応を抑制する物質も産生することで感染を成立させる。論文では、白きょう病菌を含む様々な病原糸状菌の感染戦略と、昆虫側の多様な防御機構の最新の知見を紹介し、両者の相互作用の複雑さを明らかにしている。この研究は、生物農薬開発や害虫防除への応用が期待される。

 

サナギタケの胞子はどこにいる?

/** Geminiが自動生成した概要 **/
ヨトウムシ被害の多い地域にサナギタケの胞子が少ないのでは、という疑問からサナギタケの生態調査が始まった。調査の結果、サナギタケの胞子は落ち葉や周辺の木の葉に存在することが判明し、腐葉土を入れたハウスでサナギタケが発生したという報告とも一致した。サナギタケは薬効成分が豊富で人工培養も盛んだが、畑への応用はまだ不明確。今後の研究で、人工培養の知見が畑のヨトウムシ対策に繋がるか期待される。さらに、サナギタケ培養液には抗がん作用があるという研究結果もあり、今後の更なる研究が期待される。

 

グラスエンドファイトと天敵でヨトウの被害を減らせるか?

/** Geminiが自動生成した概要 **/
イネ科緑肥、特にペレニアルライグラスの活用によるヨトウムシ防除の可能性について考察している。ペレニアルライグラスに共生するグラスエンドファイトのアルカロイドはヨトウムシへの効果が不明なため、ヨトウムシの天敵に着目。農研機構の研究では、ネギ栽培におけるムギの間作が、クモやカメムシなどの天敵を呼び寄せ、ヨトウムシ防除に効果があったと報告されている。これを踏まえ、作物へのヨトウムシの到達を防ぐために、天敵が住み着くムギの間作が有効だと結論づけている。ペレニアルライグラスは多湿に弱く窒素要求量が多いため、通路ではなく圃場の周囲に植えるのが適切であると考え、通路にはマルチムギ、周囲にはペレニアルライグラスという二段構えの防除体系を提案している。

 

グラスエンドファイトのアルカロイドに頼りたい

/** Geminiが自動生成した概要 **/
ライムギは麦角菌に感染しやすく、菌が産生する麦角アルカロイドにより麦角中毒を引き起こす。中毒症状は壊疽型と痙攣型に分類され、深刻な健康被害をもたらす。中世ヨーロッパでは「聖アントニウスの火」と呼ばれ恐れられた。現代では品種改良や栽培管理により麦角中毒は減少したが、ライムギは依然として麦角菌の宿主となる可能性がある。家畜への飼料にも注意が必要で、感染したライムギは家畜にも中毒症状を引き起こす。そのため、ライムギの栽培・利用には麦角菌への感染リスクを考慮する必要がある。

 

畑作の間に稲作をかますということ

/** Geminiが自動生成した概要 **/
イネ科緑肥は、土壌改良効果が期待される一方で、窒素飢餓や線虫被害といった問題も引き起こす可能性がある。その効果は土壌の状態や緑肥の種類、すき込み時期によって大きく変動する。窒素飢餓は、緑肥の分解に伴う微生物の活動による窒素消費が原因で、イネ科緑肥は炭素率が高いため特に起こりやすい。線虫被害は、特定のイネ科緑肥が線虫を増加させる場合があるため、種類選定が重要となる。効果的な利用には、土壌分析に基づいた緑肥の選定、適切なすき込み時期の決定、必要に応じて窒素肥料の追肥などの対策が必要となる。また、緑肥以外の土壌改良資材との併用も有効な手段となり得る。

 

バリダマイシンA再び

/** Geminiが自動生成した概要 **/
バリダマイシンAは菌のトレハロース分解酵素を阻害する農薬である。トレハロースは高ストレス環境下で菌がグルコースから合成し、タンパク質の安定化に利用する。普段はエネルギー源であるグルコースを、ストレス下では安定化のためにトレハロースに変換し、ストレスから解放されると分解して再びグルコースに戻す。バリダマイシンAはこの分解を阻害することで、菌を餓死させる。しかし、菌にとって低ストレス環境下ではトレハロースは合成されないため、バリダマイシンAの効果は疑問視される。作物感染時は、作物の防御反応により菌にとって高ストレス環境となる可能性が高いため、バリダマイシンAは有効と考えられるが、低ストレス環境下での効果は不明である。

 

クチクラ層は何からできている?

/** Geminiが自動生成した概要 **/
クチクラ層は植物の表面を覆うワックス層で、クチンとクタンという物質から構成される。クチンは脂肪酸由来のポリエステルで、構造は比較的よく解明されている。一方、クタンは炭水化物ポリマーと予想されているが、構造や合成経路は未解明な部分が多い。クチクラ層の構成物質自体が完全には解明されていないため、教科書等で詳細に扱われることが少ない。クチンが脂肪酸由来であることは、界面活性剤を含む展着剤の効果を説明づける。

 

一般展着剤の界面活性

/** Geminiが自動生成した概要 **/
展着剤は界面活性を利用し、薬剤を葉面に保持する。界面活性物質は疎水性と親水性の両方の性質を持ち、水中では疎水性部分を内側にしたミセルを形成する。この疎水性部分が葉面の油分やクチクラ層と親和することで、葉面に親水性の膜を作り、水溶性の薬剤を留める。しかし、膜の端がクチクラと接触している点に疑問が残る。クチクラ層は水を弾くだけでなく、有用成分を選択的に透過する可能性があり、膜の端と結合できる箇所が存在するかもしれない。このため、木酢液に洗剤(界面活性剤)を添加する意見が出てくる。

 

展着剤とは何だろう

/** Geminiが自動生成した概要 **/
展着剤は、農薬などを植物の葉に付着しやすくする薬剤。葉の表面はクチクラ層で覆われており、水を弾くため、農薬の効果を上げるために展着剤が必要となる。展着剤には、一般展着剤、機能性展着剤、固着性展着剤の3種類がある。一般展着剤は界面活性剤で葉への付着を促し、機能性展着剤は薬剤を植物や害虫に浸透させ、固着性展着剤は被覆膜で残効性を高める。アース製薬の「やさお酢」に含まれる展着剤は機能性展着剤に分類される。

 

食酢の農薬的な使用の際には展着剤を

/** Geminiが自動生成した概要 **/
植物の葉の表面はクチクラ層で覆われ、水を弾くため、農薬などの有効成分が届きにくい。そこで、有効成分を付着させるために展着剤が必要となる。展着剤自体は殺虫・殺菌作用を持たないが、有効成分を植物や害虫に付着させ、効果を発揮させる役割を持つ。アース製薬の「やさお酢」も展着剤を含み、食酢をアブラムシに付着させ効果を高めている。展着剤は、物質の効果を確実にするための重要な要素である。

 

食酢と重曹

/** Geminiが自動生成した概要 **/
バリダマイシンAは、糸状菌の細胞壁合成を阻害する抗生物質農薬で、うどんこ病に高い効果を示す。耐性菌出現リスクが低いとされ、有機JASで使用可能なため注目されている。しかし、うどんこ病菌の細胞壁合成に関わる酵素の遺伝子に変異が生じると抵抗性を獲得してしまう。そこで、バリダマイシンAと他の作用機構を持つ農薬を組み合わせることで、耐性菌出現リスクを低減し、持続的な防除効果を目指す研究が進められている。他の農薬との混合散布やローテーション散布は、うどんこ病の防除において重要な戦略となる。

 

大多数を占める日和見菌の振る舞い

/** Geminiが自動生成した概要 **/
漫画『もやしもん』を参考に、土壌中の微生物、特に日和見菌の振る舞いについて解説しています。日和見菌は環境に応じて有益菌にも有害菌にも加担する性質があり、土壌環境が良い方向にも悪い方向にも一気に傾ける力を持っています。このため、未熟堆肥の利用は、熟成が進むか病気が蔓延するかの賭けとなる可能性があります。記事は、殺菌剤の使用は土壌環境の改善後に行うべきだと主張しています。なぜなら、殺菌剤の使用によって有害菌が耐性を得て、それが日和見菌に水平伝播した場合、深刻な事態を招く可能性があるからです。土壌環境の改善を優先することで、日和見菌を有益な方向に導き、健全な生育環境を維持することが重要です。

 

農薬の開発と病原菌の耐性獲得、再び農薬の開発へ

/** Geminiが自動生成した概要 **/
細菌はプラスミドを通じて抗生物質耐性遺伝子などの情報を共有し、集団全体の生存率を高める。プラスミドは染色体とは別に存在するDNAの環で、接合と呼ばれるプロセスで他の細菌に伝達される。これは遺伝子の水平伝播と呼ばれ、異なる種間でも起こりうるため、耐性遺伝子の急速な拡散につながる。一方、プラスミドの維持にはエネルギーが必要なため、抗生物質が存在しない環境では、耐性遺伝子を持つプラスミドは失われることもある。このため、過去に使用されなくなった抗生物質が再び効果を持つ可能性がある。

 

酸アミド系殺菌剤ペンチオピラド

/** Geminiが自動生成した概要 **/
ペンチオピラドは、ミトコンドリアの電子伝達系を阻害する殺菌剤。コハク酸脱水素酵素(SDH)に作用し、コハク酸からユビキノンへの電子伝達を阻害することで、菌の呼吸を阻害する。この結果、NADHの生成が阻害され、ATP合成が阻害され、菌の生育が抑制される。黒腐れ菌核病対策として土壌pH調整と併用された事例も紹介されている。

 

バリダマイシンAのポテンシャル

/** Geminiが自動生成した概要 **/
バリダマイシンAは、トレハロース分解阻害による殺菌作用を持つ農薬だが、植物の抵抗性(SAR)も誘導する。ネギ等の切断収穫後の消毒に慣習的に用いられるが、これはSAR誘導による予防効果と合致する。SAR誘導剤であるプロベナゾールと同様に、バリダマイシンAもサリチル酸の上流で作用すると推定される。植物の免疫は防御タンパク質の合成によるもので、農薬に頼る前に栽培環境や施肥を見直すことが重要である。適切な施肥設計と緑肥活用による土壌環境調整は、農薬の使用回数削減に繋がる。

 

バリダマイシンAという殺菌剤

/** Geminiが自動生成した概要 **/
バリダマイシンAは、ネギやニラなどの作物でカット収穫後の消毒に使われる農薬。トレハロース分解酵素のトレハラーゼを阻害する作用機構を持つ。トレハロースは微生物にとって乾燥、凍結、熱、薬品、圧力などのストレス耐性を付与する物質。バリダマイシンAはトレハロース分解を阻害することで、菌のストレス耐性を奪い、過剰蓄積によるエネルギー消費の増大などで殺菌効果を発揮すると考えられる。

 

殺菌剤の標的とSH酵素阻害

/** Geminiが自動生成した概要 **/
マンゼブなどのジチオカーバメート系殺菌剤は、SH酵素阻害を通じて殺菌活性を示す。SH酵素阻害とは、システインのSH基を活性中心とする酵素の直接阻害、補酵素CoAやリポ酸のSH基との反応による阻害、酵素反応に必要な重金属のキレートによる阻害を指す。マンゼブに含まれる亜鉛は、I-W系列の規則に従い金属酵素を阻害する。システインは硫黄を含むアミノ酸で、タンパク質の構造維持や活性酸素の除去に関わるグルタチオンの構成要素となる。ジチオカーバメートは、2つの硫黄を含むウレタン構造を指す。

 

亜鉛を含む農薬の作用をI-W系列から考えてみる

/** Geminiが自動生成した概要 **/
マンゼブは亜鉛を含む農薬で、I-W系列に基づくと、亜鉛は強力な結合力を持ちます。この亜鉛がマンガンや鉄を利用する酵素タンパク質に結合すると、酵素の作用が阻害されます。I-W系列では、結合力が強い金属ほどリグニンなど強固な物質の合成に関与しますが、結合力が強すぎると生命活動に悪影響を及ぼします。銅は生理作用を維持できる範囲で結合力が強く、リグニン合成に必須ですが、アルミニウムは強すぎて毒性があります。亜鉛は銅に次ぐ結合力を持ち、生命活動に不可欠な微量要素でもあります。マンゼブが亜鉛を含んでいるため、病原菌の酵素を阻害する効果がありますが、植物は微量要素として亜鉛を利用するため、予防薬として用いることができます。

 

抗生物質ストレプトマイシン

/** Geminiが自動生成した概要 **/
ストレプトマイシンは放線菌由来の抗生物質で、真正細菌のリボソームを阻害することで選択的に殺菌する。DNAの設計図に基づきmRNAがタンパク質合成情報をリボソームに伝えるが、ストレプトマイシンはこの過程を阻害する。真核生物(動植物、菌類)のリボソームは構造が異なるため影響を受けず、農薬として使用した場合、作物には効かず、細菌にのみ作用する。しかし、作物や人体への副作用の可能性については進化論に関わるため、ここでは触れられていない。

 

放線菌と協働して軟腐病を減らす

/** Geminiが自動生成した概要 **/
作物の病原性細菌は、クオラムセンシング(QS)と呼ばれる細胞間コミュニケーション機構を用いて、集団密度を感知し、協調的に病原性を発揮する。QSは、シグナル分子であるオートインデューサー(AI)の濃度変化によって制御される。AI濃度が一定閾値を超えると、細菌集団はバイオフィルム形成、毒素産生、運動性制御など、様々な病原性因子を一斉に発現し、植物に感染する。軟腐病菌は、N-アシルホモセリンラクトン(AHL)と呼ばれるAIを利用したQSシステムを持つ。AHLの産生を阻害することで、軟腐病菌の病原性を抑制できる可能性がある。また、植物側も細菌のQSを妨害する機構を備えている場合があり、これらを活用した新たな病害防除法の開発が期待されている。

 

菌と細菌について

/** Geminiが自動生成した概要 **/
記事は、放線菌が土壌にとって有益な理由を、菌と細菌の違いを対比しながら解説しています。放線菌は好気性環境で増殖し、カビのキチン質を分解、さらに細菌に効く抗生物質を生成するため、土壌環境のバランスを整えます。菌は多細胞生物(例:カビ、キノコ)、細菌は単細胞生物と定義づける一方で、単細胞の酵母は菌に分類されるという例外も提示。これは細胞核の有無による違いで、菌はDNAが核膜に包まれていますが、細菌には核膜がありません。この構造の違いが、細菌に選択的に作用する抗生物質開発の基盤となっています。放線菌も細菌の一種であり、自身と異なる構造を持つ細菌を抑制することで、土壌環境の調整に貢献していることを示唆しています。

 

良い土の匂いは放線菌によるもの?

/** Geminiが自動生成した概要 **/
良い土の匂いは放線菌によるものと言われ、放線菌は好気性で土壌中に棲息する細菌である。キチン質を分解して増殖し、世界初の抗生物質ストレプトマイシンを生産する菌種も存在する。ストレプトマイシンは真正細菌のタンパク質合成を阻害することで増殖を抑えるが、動植物には作用しない。放線菌の生育しやすい環境は栽培にも適しており、植物の免疫活性化に繋がるキチンの断片も土壌中に存在するため、病害抑制にも関与すると考えられる。

 

軟腐病菌の侵攻を止めるには?

/** Geminiが自動生成した概要 **/
作物の病原性細菌は、クオラムセンシング(QS)という細胞間コミュニケーション機構を用いて、集団での病原性発現を制御している。QSは、細菌が分泌するシグナル分子(オートインデューサー)の濃度を感知することで、集団密度を認識し、特定の遺伝子発現を協調的に制御する仕組みである。病原性細菌は、QSを介して毒素産生、バイオフィルム形成、運動性などを制御し、植物への感染を効率的に行う。一方、植物は細菌のQSシグナルを認識し、防御応答を活性化することで抵抗性を示す場合もある。そのため、QSを標的とした新たな病害防除戦略の開発が期待されている。具体的には、QSシグナルの分解、シグナル認識の阻害、QS関連遺伝子の発現抑制などが挙げられる。

 

グラム陰性の細菌とは?

/** Geminiが自動生成した概要 **/
寒起こしは、土壌を凍結・乾燥させることで、土壌病害の抑制に繋がる可能性がある。特に、水分が多いと増殖しやすいグラム陰性菌に対して有効と考えられる。凍結によって土壌中の水分が氷となり、細菌の細胞が破壊される。また、乾燥によって細菌の増殖が抑制される。しかし、寒起こしの効果は土壌の種類や気候条件によって異なるため、過信は禁物である。土壌の排水性を高めるなど、他の対策と組み合わせることで、より効果的に病害を抑制できる。

 

対軟腐病

/** Geminiが自動生成した概要 **/
植物はサリチル酸(SA)というホルモンで病原体への防御機構を活性化します。SAは病原体感染部位で生合成され、全身へシグナルを送り、抵抗性を誘導します。この抵抗性誘導は、病原関連タンパク質(PRタンパク質)の蓄積を促し、病原体の増殖を抑制します。PRタンパク質には、病原体の細胞壁を分解する酵素や、病原体の増殖を阻害する物質などが含まれます。SAは、植物免疫において重要な役割を果たす防御ホルモンです。プロベナゾールはSAの蓄積を促進し、植物の防御反応を高めます。

 

アミノ酸、タンパク質と生命活動の化学

/** Geminiが自動生成した概要 **/
この記事は、アミノ酸の理解を深めるための新たな視点を提供する書籍「アミノ酸 タンパク質と生命活動の化学」を紹介しています。著者は薬学の専門家で、アミノ酸を薬の前駆体として捉え、トリプトファンからオーキシンが合成される過程などを解説しています。この視点により、アミノ酸の側鎖の重要性や、カルボニル基やアミノ基の存在による酸性・塩基性の理解が容易になります。著者は、この本と「星屑から生まれた世界」を併せて読むことで、生物への理解が深まると述べています。

 

防御の基礎は芳香族のアミノ酸にあり

/** Geminiが自動生成した概要 **/
植物ホルモンのサリチル酸生合成の解明をきっかけに、芳香族アミノ酸であるチロシンとフェニルアラニンの関係が注目された。チロシンはベンゼン環にヒドロキシ基を持つのに対し、フェニルアラニンは持たない。動物ではフェニルアラニンからチロシンが合成される。植物では、シキミ酸経路においてシキミ酸からプレフェン酸を経て、チロシンとフェニルアラニンが合成される。また、サリチル酸生合成に関わるコリスミ酸もシキミ酸経路で生成される。シキミ酸経路は植物色素、リグニン、ABAなど様々な物質の合成に関与している。

 

防御の植物ホルモン、サリチル酸

/** Geminiが自動生成した概要 **/
植物ホルモンのサリチル酸は、病原菌感染時に植物体内で合成され、免疫応答を誘導するシグナル分子として働く。サリチル酸はフェニルアラニンまたはコリスミ酸から生合成される。病原菌侵入時に増加し、防御機構を活性化する酵素群の合成を促す。また、メチル化により揮発性となり、天敵を誘引したり、近隣植物の免疫を活性化させる可能性も示唆されている。この作用はプラントアクティベーターという農薬にも応用されている。

 

銅の機能を活かした農薬、ボルドー液2

/** Geminiが自動生成した概要 **/
野菜の切り口の苦味は、植物が外敵から身を守るための防御機構によるものです。苦味の元となる化合物は、主にポリフェノール類やテルペノイド類で、これらはファイトアレキシンと呼ばれる物質群に属します。ファイトアレキシンは、植物が病原菌や害虫の攻撃を受けた際に生成される抗菌・抗毒作用を持つ物質です。野菜を切ると、細胞が破壊され、内部に存在する酵素と基質が反応し、ポリフェノールやテルペノイドが生成されます。例えば、ゴボウの苦味はポリフェノールの一種であるクロロゲン酸によるものです。また、アクと呼ばれる褐変現象も、ポリフェノールが酸化酵素と反応することで起こります。これらの苦味成分は、人間にとっては必ずしも悪いものではなく、抗酸化作用や抗炎症作用など、健康に beneficial な効果を持つ場合もあります。しかし、過剰摂取は消化器系への負担となる可能性もあるため、適量を摂取することが重要です。

 

植物は銅を何に活用するか?

/** Geminiが自動生成した概要 **/
生物は常に活性酸素を発生しており、これは呼吸によるエネルギー産生の副産物である。活性酸素は細胞を傷つけるため、老化や病気の原因となる。しかし、生物は活性酸素を完全に排除するのではなく、免疫や細胞の情報伝達などにも利用している。活性酸素の発生源や種類、細胞への影響、そして生物がどのように活性酸素を利用し、防御しているかを理解することは、健康維持や病気予防に繋がる。

 

銅の機能を活かした農薬、ボルドー液

/** Geminiが自動生成した概要 **/
ボルドー液は、硫酸銅と消石灰の混合溶液から成る農薬である。硫酸銅は胆礬(硫酸銅(II)五水和物)を原料とし、酸化帯に存在し水に溶けやすい。消石灰は炭酸石灰から生成され、土壌pH調整に用いられる。ボルドー液は、消石灰の石灰乳に硫酸銅を加えて作られる。酸性条件で活発になるカビ対策として、硫酸銅の銅イオンの殺菌力を利用しつつ、消石灰でアルカリ性にすることで、酸性環境を好むカビの繁殖を抑える効果が期待される。

 

乾燥ストレスから再び牛糞堆肥による土作りの価値を問う

/** Geminiが自動生成した概要 **/
牛糞堆肥の土作りにおける価値を、乾燥ストレスと高塩ストレスの観点から再考する。植物は乾燥/高塩ストレスによりプロリンを合成し、これが虫の食害を誘発する。牛糞堆肥は硝酸態窒素や塩分を多く含み、ECを高め高塩ストレスを招き、結果的にプロリン合成を促進、虫を引き寄せる。また、プロリン合成の材料となる硝酸根も供給するため、一見健全な成長を促すが、実際は虫害リスクを高めている。つまり、窒素過多や牛糞堆肥過剰施用で虫害が増えるのは、高塩ストレスによるプロリン合成促進が原因と考えられる。

 

施肥設計の見直しで農薬防除の回数は確実に減らせる

顧問として関わっている京都農販のほ場で信じられない光景を見た。それは、旬でない時期のネギにも関わらず、農薬による防除が1回で収穫まで行き着いたことだ!この防除一回というのは、アザミウマという虫による食害を回避するためのもの。病気に対しての農薬の使用は一切行っていない。この話の何がすごいのか?を伝えるために、ネギの栽培の一般的な話をしよう。ちなみに匠レベルにまで到達した有機栽培の土であっても、旬でない時期の作物の栽培を農薬なしで栽培するのは難しいだろ

 

グリホサート耐性を獲得する

/** Geminiが自動生成した概要 **/
グリホサートは、植物の必須酵素EPSPSを阻害する除草剤です。しかし、遺伝子組み換えにより、グリホサートを分解する酵素GOXを持つ、あるいはグリホサートが結合しない変異型EPSPSを持つ作物が作られました。前者が主流です。自然界でも同様の変異が起こっており、除草剤が効かない雑草の出現の原因となっています。これは、土壌細菌との遺伝子交換による可能性も示唆されています。

 

グリホサートは植物体内の何を潰す?

/** Geminiが自動生成した概要 **/
グリホサートは除草剤ラウンドアップの有効成分で、植物体内の酵素EPSPSを阻害することで除草効果を発揮します。EPSPSは植物ホルモンやアミノ酸合成の初期段階に関わる重要な酵素で、グリホサートによってこの働きが阻害されると植物は生育に必要な物質を合成できなくなり、枯れてしまいます。次の記事では、このグリホサートへの耐性を植物がどのように獲得するかについて解説されています。

 

ラウンドアップという除草剤の今後は?

有効成分がグリホサートイソプロピルアミン塩という除草剤がある。ホームセンターでよく見る農薬の一つラウンドアップという名前で売られていることが多い。非選択性といわれる、全植物を即座に枯らす除草剤として扱われている。ラウンドアップ - Wikipedia植物特有の器官にダメージを与え、更に速攻で分解される成分であるため、安全性の高い農薬とされている。このラウンドアップですが、安全性に関する論文を色々と探してみたら、下記の様なものがあった。Glyphosate&rsqu

 

非殺虫性のBTは人の癌細胞を選択的に破壊する

BT剤という名の生物農薬で枯草菌の仲間のバチルス・チューリンゲンシスという細菌が生成する結晶性タンパクは、鱗翅目等の昆虫に摂取されると、摂取した昆虫を死に追いやるという内容を記載した。このBTなんだけど、色々と調べていたら九州大学で興味深いテーマの論文が発表されていた。Cytocidal Actions of Parasporin-2, an Anti-tumor Crystal Toxin from Bacillus thuringiensisざっくりと書くと、非殺虫性のバチル

 

オーガニックとGMO、突き詰めると同じことが起こってる

アブラナ科作物の葉の上でイモムシはミイラになって死んでいた先日記載した葉物野菜の葉の上でイモムシがミイラになって死んでいた。畝間にもイモムシの死体がゴロゴロしていたという話※この写真はイメージですここは農薬を使用せずに栽培をしている畑(オーガニック)で、たくさんの箇所で様々な種類の野菜で同様の現象が発生していた。症状はBT剤を使用した時と同じ様なもので、作物自身が殺虫性のある結晶性タンパクを持っていた可能性が高い。BT剤という名の生物農薬

 

BT剤という名の生物農薬

農学の学部で受講するレベルの説明になるけど、BT剤というのはバチルス・チューリンゲンシスという枯草菌の仲間が合成する殺虫性の結晶性タンパク質を抽出したものを指す。BTというのは、バチルス・チューリンゲンシス(Bacillus thuringiensis)の頭文字をとってそう読んでいる。蝶(チョウ)や蛾(ガ)といった鱗翅目の昆虫がこのタンパクを摂取すると、アブラナ科作物の葉の上でイモムシはミイラになって死んでいたこんな感じで干からびて死ぬとのこと。※食欲の低


Powered by SOY CMS  ↑トップへ