ブログ内検索

プログラミング教材開発
大阪府高槻市原地区で肥料教室を開いています
検索キーワード:「沸石」
 

ゼオライトは何処にある?

/** Geminiが自動生成した概要 **/
ゼオライト(沸石)は、ケイ酸を含む鉱物の一部ケイ素がアルミニウムに置換されたアルミノケイ酸塩で、負に帯電した骨格が土壌の保肥力(CEC)を高めます。その形成は、火山灰が堆積した凝灰岩中の火山ガラスが、地下の熱水や荷重により長期間変質することで起こります。この生成過程は2:1型粘土鉱物のモンモリロナイトと類似しており、実際にモンモリロナイトを含む肥料にはゼオライトが含有される場合があります。含有量は採掘地によって大きく異なり、ほとんど含まれないものから、ほぼゼオライトで構成されるものまで様々です。

 

枕状溶岩の空隙にはゼオライトが充填されている

/** Geminiが自動生成した概要 **/
枕状溶岩の隙間にはゼオライトが充填されていることが多い。海底火山で急速に冷え固まった玄武岩質の枕状溶岩は、扇状のブロックが積み重なるため空隙ができ、そこに熱水が入り込みゼオライトが生成される。緑色岩(主成分は緑泥石)に分類される枕状溶岩は、表面が白く見える部分があり、これがゼオライトの可能性がある。また、緑色岩周辺の黒くフカフカした土は、ベントナイト、ゼオライト、腐植の組み合わせで形成されたと推測される。著者は専門知識が増えることで視野が広がる一方、初心の発想力を失うジレンマを感じている。

 

注目の資材、ゼオライトについて再び

/** Geminiが自動生成した概要 **/
ゼオライトは、沸石とも呼ばれる多孔質のアルミノケイ酸塩鉱物で、粘土鉱物のように扱われるが粘土鉱物ではない。凝灰岩などの火山岩が地中に埋没し、100℃程度の熱水と反応することで生成される。イオン交換性や吸着性を持つ。記事では、凝灰岩が熱水変質によってゼオライトや粘土鉱物などに変化する過程が解説され、同じ火山灰でも生成環境によって異なる鉱物が形成されることが示されている。ベントナイト系粘土鉱物肥料の原料である緑色凝灰岩とゼオライトの関連性にも触れられている。

 

何故ゼオライトではなく、モンモリロナイトを推すのか?

/** Geminiが自動生成した概要 **/
海底風化は、土壌生成の重要なプロセスであり、特に粘土鉱物の生成に大きく関わっている。陸上で生成された火山岩物質は、風や河川によって海へと運ばれ、海底で化学的風化作用を受ける。海水はアルカリ性であるため、岩石中の長石などの鉱物は分解され、粘土鉱物へと変化する。この過程で、岩石中のミネラルが溶出し、海水に供給される。生成された粘土鉱物は、海流によって運ばれ、堆積岩の一部となる。特にグリーンタフ地域は、海底風化の影響を受けた火山岩が多く分布し、多様な粘土鉱物が観察される。これらの粘土鉱物は、土壌の保水性や保肥性に影響を与え、農業にも重要な役割を果たしている。

 

粘土鉱物が出来る場所

/** Geminiが自動生成した概要 **/
凝灰岩が地下深くに埋没し、熱水変質作用を受けることで粘土鉱物が生成される。熱源の深さや熱水の流動性、水素イオン濃度、温度などが生成される粘土鉱物の種類(スメクタイト、沸石など)に影響する。山陰地方で産出される沸石凝灰岩は土壌改良材として利用される。モンモリロナイトや沸石は、凝灰岩が熱水変質作用を受けた後、地質学的イベントで隆起し地表に出現することで採掘可能になる。これらの粘土鉱物を土壌に投入すると、非アロフェン質の黒ボク土へと変化する可能性がある。

 

川に落ちている石を頼りに肥料の鉱山を探す

/** Geminiが自動生成した概要 **/
粘土鉱物を理解するために、筆者はまず「日本の石ころ標本箱」を参考に、仙台の名取川でゼオライトが採れることを知る。ゼオライトは土壌改良効果のある鉱物で、名取川上流に採掘鉱山があると記載されていた。Google Mapsで鉱山の場所を特定し、地質図を確認するも、海成堆積岩か非海成堆積岩か判別できなかった。仙台は元々は海であったことから、隆起した海成堆積岩と推測する。さらに土壌図も確認したが、特筆すべき点は見当たらなかった。これらの調査を通して、遠隔地にある鉱物の地質や土壌を特定することの難しさを実感する。

 

粘土鉱物を理解する旅2

/** Geminiが自動生成した概要 **/
粘土鉱物の理解を深めるため、各地のジオパークや博物館で得た情報をもとに、土壌における役割を考察している。地震や火山活動により長石などのアルミノ珪酸塩が粘土鉱物に変質する過程に着目し、図鑑で長石の種類や変質経路を調べた。温泉のpH変化と粘土鉱物の関係、黒ボク土のアロフェンと非アロフェンの起源にも触れ、どちらもアルミノ珪酸塩の二次鉱物であることを指摘。最終的に、アルミノ珪酸塩の分布と火成岩の関係へと議論を展開する。

 

高アルカリ性の温泉から土を考える

/** Geminiが自動生成した概要 **/
高アルカリ性温泉のpHが10前後になるメカニズムを考察。炭酸塩も要因だが、主な理由は、造岩鉱物である灰長石がモンモリロナイト、さらにローモンタイトといった粘土鉱物に変質する過程にあると推測される。この変質時、水素イオンが鉱物に取り込まれたり、水酸化物イオンと中和反応を起こしたりすることで、周囲のpHが上昇する。この粘土鉱物の変質は土壌でも日常的に起こっており、土壌の緩衝性(pH調整能力)が、有機酸だけでなく土を構成する鉱物自体の作用によっても発揮されるという新たな理解を得た。

 

注目の資材、ゼオライトについて知ろう

/** Geminiが自動生成した概要 **/
ゼオライト(沸石)は、結晶構造内に水を含み、加熱すると沸騰しているように見えることから名付けられた。化学組成は(Na,K)Ca₄(Al₉Si₂₇O₇₂)・29H₂Oなどで表され、多くの種類が存在する。ケイ素(Si⁴⁺)とアルミニウム(Al³⁺)が骨格内で入れ替わることで結晶全体が負に帯電し、この負電荷により陽イオンを吸着するため、土壌改良材として保肥力(CEC)向上に効果がある。また、結晶構造内の空隙に水を吸着するため、保水性も高い。


Powered by SOY CMS   ↑トップへ