ブログ内検索

micro:bitページ
とにかく速いブログサイトを目指す
検索キーワード:「田んぼ」
 

レンゲの開花を見たが、気候はまだ寒い

/** Geminiが自動生成した概要 **/
寒暖差が激しい今日この頃、レンゲ米の田んぼでレンゲの開花を確認した。4月下旬並みの暖かさの後、寒さが戻ってきたため、開花はまばらで、集合花もまだ円盤状。ハナバチは訪れておらず、蜜や花粉は残っている状態。ここ数日の寒さで、ハナバチは活動していないようだ。通常、レンゲの開花は、気温上昇と共に活発化し、ハナバチの訪花を促す。しかし、寒暖差の影響で開花と訪花活動のタイミングがずれている様子。

 

ジャンボタニシの稚貝の天敵を探せ

/** Geminiが自動生成した概要 **/
ヤゴと呼ばれるトンボの幼虫は、ジャンボタニシの稚貝を捕食することが明らかになった。トンボが田んぼに産卵することで、稲を食害しないウスバキトンボが増加し、ジャンボタニシの稚貝の個体数を抑えるという有益な生態系が形成されている可能性がある。

 

ドジョウがいる田はどんな条件の田なのだろう?

/** Geminiが自動生成した概要 **/
昔は田んぼでよく見られたドジョウですが、最近は見かけることが少なくなりました。ドジョウは水がなくなると土に潜って過ごしますが、最近の稲作で行われている中干しのような土が固くなる環境では、皮膚呼吸が難しく、生きていくのは難しいように思えます。ドジョウにとって適切な田んぼの条件とは、どのようなものなのでしょうか?水田におけるドジョウの生態について、さらに詳しく知りたいと考えています。

 

中干し無しの田でジャンボタニシが減った気がする

/** Geminiが自動生成した概要 **/
筆者は、中干しなし+レンゲ栽培をしている田んぼでジャンボタニシが減った可能性を考察しています。 ポイントは、土壌中の鉄分の酸化還元です。 ①レンゲにより土壌中の有機物が増加 ②春に土壌表面が急速に褐色化したことから、鉄分が酸化 ③その後、潅水により鉄分が還元され土壌中に蓄積 この還元された鉄をジャンボタニシが摂取することで、農薬と同様の効果が生まれたと推測しています。そして、タンニン鉄が有効なのではないかと結論付けています。

 

渓流の浅瀬にオタマジャクシがやってきた

/** Geminiが自動生成した概要 **/
渓流で見つけたオタマジャクシは、苔むす石を懸命についばんでいた。しかし、この川は水がきれいで流れが速いため、餌となる有機物は少ない。オタマジャクシにとっては、田んぼや学校のプールなど、止水で餌が豊富な環境の方が暮らしやすいだろう。美しい渓流は、彼らにとって必ずしも楽園ではないようだ。

 

稲作のリン酸肥料としてBMようりんについて触れておく

/** Geminiが自動生成した概要 **/
稲作では地力の向上が重要ですが、そのためには土壌生物の栄養不足を解消する必要があります。土壌生物は植物が吸収できない形態の栄養分を分解し、吸収可能な形に変える役割を担っています。土壌中の有機物が不足すると土壌生物の栄養が不足し、結果として植物の生育にも悪影響が出ます。BMようりんはリン酸だけでなく、微量要素やケイ酸も含むため、土壌改良材としての役割も果たします。腐植と併用することで土壌の物理性・化学性が向上し、土壌生物の活性化、ひいては地力向上につながります。

 

赤トンボを探しに収穫後の田んぼへ

/** Geminiが自動生成した概要 **/
赤トンボ(アキアカネ)は収穫後の田んぼの水たまりに産卵しますが、観察ではキャタピラで踏み固められた場所に産卵しており、乾燥が心配です。アキアカネは卵で越冬するため、水たまりが短期間で乾くことは問題ありません。しかし、土壌の保水性が向上すれば、より長く水たまりが維持され、アキアカネの産卵環境の改善に繋がる可能性があります。稲作中の土壌管理は、収穫量増加だけでなく、生物多様性にも貢献する可能性を秘めています。

 

田植え後の最初の難所のジャンボタニシをどうにかできないものか

/** Geminiが自動生成した概要 **/
## ジャンボタニシ被害と対策に関する記事の要約(250字) この記事では、田植え後のジャンボタニシ被害への対策について考察しています。筆者は、ジャンボタニシが稲をよじ登り損傷を与える様子を写真で示し、その深刻さを訴えています。 対策として、水深管理や冬の耕起による個体数抑制、捕獲などの方法が挙げられています。特に、田んぼに溝を掘り、ジャンボタニシを集めて一網打尽にする方法や、大きくなったジャンボタニシは冬を越せないため、田んぼの外からの侵入を防ぐ必要性が論じられています。 さらに、ジャンボタニシの生態や、過去に食用として輸入・養殖された歴史にも触れ、効果的な対策の必要性を訴えています。

 

田からはじめる総合的病害虫管理の続き

/** Geminiが自動生成した概要 **/
クボタの「田んぼは水を管理する」は、水田における水管理の重要性を解説する記事です。水田は、冠水と落水を繰り返すことで、雑草の抑制や地温上昇によるイネの生育促進などの効果を得ています。 記事では、水管理の具体的な手法として「代かき」や「中干し」などの伝統的な方法に加え、「水管理システム」などの最新技術も紹介されています。水管理システムは、水位や水温を自動で制御することで、農家の負担軽減と安定的な収穫に貢献します。 さらに、水田の水は周辺環境にも影響を与え、生物多様性の保全や気温上昇の緩和にも役立つことを解説。水田の水管理は、食料生産だけでなく、環境保全にも重要な役割を担っています。

 

稲作の中干しという管理技術の歴史は浅い

/** Geminiが自動生成した概要 **/
田んぼの総合的病害虫管理において、中干しは慣行的に行われていますが、本当に必要かどうか再考が必要です。中干しは土壌の酸化を促進し、土壌病害の発生リスクを高める可能性があります。また、土壌微生物の多様性を低下させ、土壌の健全性を損なう可能性も。さらに、稲の生育を一時的に抑制し、収量や品質に悪影響を与える可能性も懸念されます。中干しの代替として、抵抗性品種の利用や適切な施肥管理など、環境負荷の低い方法を検討する必要があるでしょう。

 

物理性の向上 + レンゲ栽培 + 中干しなしの稲作の新たに生じた課題

/** Geminiが自動生成した概要 **/
レンゲ栽培と中干しなし稲作で、土壌の物理性向上による肥料過多と倒伏が課題として浮上。レンゲによる窒素固定量の増加と、物理性向上による肥料効能の持続が重なった可能性。中干しのメリットは物理性向上により減少し、デメリットである高温障害回避と益虫増加の方が重要となる。解決策は施肥量減らし。この技術確立は、肥料・農薬削減によるSDGs、土壌炭素貯留によるCO2削減、鉄還元細菌によるメタン発生抑制に繋がり、持続可能な稲作に貢献する。

 

いもち病対策の要のMELは何から合成されるか?

/** Geminiが自動生成した概要 **/
イネの葉面常在菌が合成するマンノシルエリスリトールリピッド(MEL)は、いもち病対策の鍵となる。MELは脂質と糖から合成されるが、脂質源は葉のクチクラ層を分解することで得られた脂肪酸、糖は葉の溢泌液に由来すると考えられる。つまり、常在菌はクチクラを栄養源として増殖し、MELを生産する。MELがあると様々な菌が葉に定着しやすくなり、いもち病菌のα-1,3-グルカンを分解することで、イネの防御反応を誘導する。このメカニズムを機能させるには、健全なクチクラ層と十分な溢泌液が必要となる。周辺の生態系、例えば神社や古墳の木々なども、有益な菌の供給源として重要な役割を果たしている可能性がある。

 

カエルの変態は中干し有りの田では間に合うのか?

/** Geminiが自動生成した概要 **/
農環研ニュースNo.107(2015.7)は、水田で使用される農薬がアマガエルの幼生(オタマジャクシ)に与える影響を調査した。アマガエルはイネの害虫を捕食するため、農薬の影響評価は重要である。実験では、幼生の発育段階ごとに農薬への感受性を調べた結果、変態前の幼生は変態後の幼生や成体よりも農薬感受性が高いことがわかった。特に、初期幼生は農薬の影響を受けやすく、死亡率や発育阻害が顕著であった。一方、変態が近づくと農薬耐性が向上する傾向が見られた。この研究は、水田生態系における農薬の影響を理解し、適切な農薬使用を考える上で重要な知見を提供する。

 

ケイ素を利用する細菌たち

/** Geminiが自動生成した概要 **/
水田土壌中の細菌がイネのケイ素吸収に関与する可能性が示唆されている。ケイ素を取り込む細菌24株は全てバチルス属で、食中毒菌のセレウス菌(B.cereus)や生物農薬に使われるBT剤(B. thuringiensis)なども含まれる。バチルス属はケイ素の殻を作ることで過酷な環境を生き抜くとされ、B.cereusはケイ素により耐酸性を得ている可能性がある。ケイ素の吸収にはマンガン、亜鉛、カルシウム、鉄等のミネラルが必要で、特に水田で欠乏しやすい亜鉛の供給が重要となる。土壌中の細菌がケイ素を吸収しやすい環境を整えることで、猛暑下でもイネの秀品率維持に繋がる可能性がある。

 

ケイ酸苦土肥料から稲作を模索する

/** Geminiが自動生成した概要 **/
ケイ酸苦土肥料を用いた稲作の可能性を探る記事。ケイ酸は稲作に有効だが、風化しにくい石英ではなく、風化しやすいケイ酸塩鉱物である必要がある。ケイ酸苦土肥料の原料は蛇紋岩で、風化しやすいネソケイ酸塩であるかんらん石が変質して生成される蛇紋石を主成分とする。水田上流にこれらの岩石が存在し、水路がコンクリートで固められていない環境であれば、ケイ酸が水田に供給され、猛暑でも登熟不良を起こしにくい稲作が可能になる可能性がある。しかし、そのような環境は標高の高い涼しい地域に限られる。蛇紋石とかんらん石に加え、緑泥石の活用にも言及。さらに、植物が利用できるケイ酸は、微生物が鉱物から溶出したものが多いと指摘している。

 

米の美味しさは水の綺麗さというけれど

/** Geminiが自動生成した概要 **/
清水っ粉(米粉)の品質向上を目指し、米の食味向上、特に甘味・旨味と粉の粘性の関係を探る著者は、高品質米産地との共通点から水質の重要性に着目している。栄村や浅川町等の事例から、カリウムよりも鉄やマグネシウム豊富な水質が鍵となる可能性を示唆。仁多米産地周辺のベントナイト鉱山に着目し、海由来のミネラルを含む粘土鉱物が水質に影響を与え、米の食味向上に寄与する仮説を立てている。小滝集落の牛糞施肥はカリウムが少ない土壌で有効だったと推測し、ベントナイトのような粘土鉱物肥料の可能性を探っている。

 

美味しいコメを求めて福島県の浅川町へ

/** Geminiが自動生成した概要 **/
知人の出身地である福島県浅川町で局所的に美味しい米が収穫できるという話を聞き、地質に着目して現地を訪れた。美味しい米として知られる小滝のコメとの関連性を探るため、浅川町の地質を調べると、水田を囲む小山が超苦鉄質岩類で形成されていることが判明した。超苦鉄質岩類は米に必要な鉄やマグネシウムを豊富に含む一方、カリウムが不足しがちである。しかし、この地域では上流に阿武隈花崗岩が存在し、花崗岩由来のカリウムが川を通じて水田に供給されている可能性がある。つまり、超苦鉄質岩類と花崗岩の組み合わせが、米作りに理想的な土壌環境を作り出していると考えられる。実際に収穫された米の品質については、食べてみないと分からない楽しみとして残されている。

 

蛇紋岩とニッケル

/** Geminiが自動生成した概要 **/
蛇紋岩は苦土と鉄を豊富に含み、栽培に有益と思われがちだが、土壌専門家はpH上昇とニッケルの過剰を懸念している。 ニッケルは尿素分解酵素の必須元素だが、過剰は有害となる。 しかし、稲作や蛇紋岩を含む山の麓の畑では、pH上昇やニッケル過剰の影響が異なる可能性がある。 専門家が局所的な観点から欠点と捉える特徴も、より広範な視点から見直す必要がある。

 

ヒスイ輝石のあるところ

/** Geminiが自動生成した概要 **/
糸魚川で発見されたヒスイ輝石は、プレート沈み込み帯の低温高圧下で生成される。大陸プレートと海洋プレートの衝突地点付近の付加体最下層で、曹長石を原料に生成された後、蛇紋岩に捕獲され地表付近まで上昇してきた。そのため、ヒスイは糸魚川-静岡構造線ではなく、その西側の付加体エリアで発見される。小滝川上流の明星山麓も蛇紋岩地帯であり、この生成過程と合致する。しかし、同じ蛇紋岩地帯である大江山ではヒスイ発見の報告がないため、更なる調査が必要である。

 

ヤンゴンで長粒米を食す

/** Geminiが自動生成した概要 **/
ヤンゴンで長粒米を食べた著者は、日本米との味の違いに驚き、その原因を考察する。パサパサした食感の長粒米は単体では美味しくなく、チャーハンなどに向いている。日本米との味の違いは品種だけでなく、土壌や水質も影響すると推測。蛇紋岩米や小滝米の例を挙げ、日本の複雑な地形が生む水質の多様性が米の味に影響を与えているのではないかと考察。過去の経験から、長粒米でも栽培地によって味が異なることを実感し、今後の出会いに期待を寄せている。

 

蛇紋岩地植物群

/** Geminiが自動生成した概要 **/
蛇紋岩地帯は、マグネシウムと鉄が多く、窒素、リン酸、カリウムが少ない特殊な土壌環境です。蛇紋岩はかんらん岩が水と反応して生成され、この過程で磁鉄鉱と水素も発生します。このため、蛇紋岩の山は磁性を帯びています。 土壌はpHが高く、蛇紋石は粘土鉱物であるものの、腐植蓄積は少ないと予想されます。一般的な植物はマグネシウム過多とカリウム欠乏で吸水障害を起こしますが、一部の植物は適応し「蛇紋岩地植物群」を形成します。水田には利点がある一方、畑作では対策が必要です。また、高pHのため土壌中の鉄が溶脱しにくく、鉄欠乏も起こりやすい環境です。

 

超苦鉄質の大江山の麓の土壌

/** Geminiが自動生成した概要 **/
京都舞鶴の大江山麓の土壌は、超苦鉄質のかんらん岩や蛇紋岩の影響で高pH(約8)かつマグネシウム過剰、カリウム不足という特徴を持つ。実際に大江山麓で畑を借りた農家は、強い酸性肥料を用いても土壌pHは下がらず、カリウム不足も解消されずに栽培を断念した。これは、超苦鉄質岩にカリウムを含む鉱物が少なく、高pH土壌ではカリウムが吸収されにくいことが原因と考えられる。そのため、この地域ではカリ肥料の適切な施用が重要となる。また、土壌は鉄過剰により赤色を呈すると予想される。

 

京都舞鶴の大江山超塩基性岩体地域

/** Geminiが自動生成した概要 **/
京都舞鶴の大江山は、かんらん岩や蛇紋岩といった超塩基性岩で世界的に有名な地域。そこで緑色の石を発見し、かんらん石(宝石名:ペリドット)ではないかと推測。かんらん石はMg₂SiO₄とFe₂SiO₄の組成を持つケイ酸塩鉱物で、熱水変成すると蛇紋岩や苦土石に変化する。写真の白い部分は炭酸塩鉱物に似ているが、かんらん石が透明になったものか、蛇紋岩特有の模様かは不明。この地域で聞き取り調査を行い、次回に続く。

 

火山灰土壌は栽培しやすいというイメージ

/** Geminiが自動生成した概要 **/
火山灰土壌はミネラル豊富で水はけも良く、栽培しやすいイメージがあるが、地域差が大きく、桜島のような恵まれた土壌は例外。二酸化ケイ素の含有量で土壌の性質は変わり、栽培の容易さも異なる。火山灰だけでなく、近隣の山の母岩も土壌に影響を与える。特定の地域で成功した栽培法が、他地域で再現困難な場合もある。真の実力者は、困難な環境でも成果を出せる人である。

 

頁岩由来の肥料の使いどころとは?

/** Geminiが自動生成した概要 **/
山の岩が土壌へと変化する過程は、風化と侵食という作用による。風化は、温度変化や水、生物の活動などによって岩が砕かれる現象である。これには、物理的な破砕だけでなく、化学的な分解も含まれる。侵食は、風や水、氷河などによって風化された岩片が運ばれる現象である。運ばれた岩片は堆積し、さらに風化や分解が進むことで、やがて土壌の母材となる。土壌生成には、母材に加えて、気候、生物活動、地形、時間といった要素が複雑に影響し合い、長い年月をかけて土壌は形成される。

 

栽培にとっての苦土の基のかんらん石

/** Geminiが自動生成した概要 **/
大阪市立科学館で展示されている大きなかんらん石は、マグネシウムを含む苦土かんらん石(MgSiO₄)である。かんらん石は、マグネシウムを含む苦土かんらん石と鉄を含む鉄かんらん石に大別される。苦土かんらん石を主成分とする岩石の蛇紋岩が水的作用で変性すると、熱水で溶出して再結晶化し苦土石となる。苦土は栽培にとって重要な鉱物である。著者は、超苦鉄質の地質エリアでかんらん石の小石を探したいと考えている。

 

注目の資材、ベントナイトについて知ろう

/** Geminiが自動生成した概要 **/
ベントナイトは火山灰が水中で変成した岩石で、モンモリロナイトなどの2:1型粘土鉱物を多く含む。吸水性、膨潤性、粘結性に優れ、農業や工業で幅広く利用される。成分分析によると、山形県月布産のベントナイトはスメクタイトが約半分、二酸化ケイ素などの無色鉱物が約1/3、残りはミネラルで構成される。構成ミネラルは元の火山灰に依存するため産地により変動する。ベントナイトは玄武岩質の火山灰だけでなく、他の火山灰からも形成されることがグリーンタフの観察から示唆されている。その高い粘土鉱物含有量から、農業利用での秀品率向上に貢献する可能性がある。

 

夜久野高原の宝山の麓に落ちていた緑の石

/** Geminiが自動生成した概要 **/
夜久野高原の宝山で採取した緑色の石の正体を考察する記事です。宝山は玄武岩質の火山で、麓の土は黒、壁面の土は赤です。採取した石の中には、山頂付近のスコリア、内部が割れて出てきたと推測される玄武岩がありました。注目すべきは全体的に緑色の石で、筆者はマグネシウムを含む鉱物、または粘土を含むチャートではないかと推測します。チャートの可能性は光沢がないことから否定し、火山であることから超塩基性火山岩コマチアイトの可能性を検討します。コマチアイトの画像と類似していることから、コマチアイトの可能性が高くなります。また、玄武岩マグマの冷却初期にかんらん石ができるとの記述から、かんらん石の可能性も示唆されます。コマチアイトとかんらん石はどちらもマグネシウムを豊富に含むため、緑色の石はマグネシウムを多く含むと結論づけられます。宝山は二酸化ケイ素が少ない超塩基性岩で、鉄とマグネシウムを豊富に含むことから、京都の一般的な土地とは異なる特性を持つと考察しています。

 

苦土があるところ

/** Geminiが自動生成した概要 **/
京都市内の農家で、慣行農法の土壌に苦土肥料(水マグ)を施用することで、カルシウム過剰による生育不良を劇的に改善した事例が紹介されています。現代農業では土壌pH調整に石灰を多用するためカルシウム過剰になりがちで、結果としてカルシウム欠乏症に陥り、秀品率が低下することが問題となっています。カルシウムを含まない苦土肥料を用いることで、pH調整とマグネシウム補給を同時に行い、この問題を解決できる可能性が示唆されています。水マグの原料である水滑石は蛇紋岩から産出するため、地質図を活用することで産地を特定し、土壌改良に役立てられる可能性も示唆しています。この事例は、現代農業の慣行を見直し、土壌管理の重要性を改めて認識させるものとなっています。

 

日本シームレス地質図で見えることが増えたはず

/** Geminiが自動生成した概要 **/
「日本の石ころ標本箱」を参考に、栽培の成功/失敗と地質の関係を探る試み。成功地は酸性岩土壌、失敗地はチャート主体で規則性を持つ母岩だった。サンプル数は少ないが、地質を事前調査することで栽培適地の判断材料になると考えた。産総研の日本シームレス地質図を用いて、ミネラル欠乏がない地域は超塩基性岩/塩基性岩地帯、鉄過剰症の地域は塩基性岩地帯と判明。事例は少ないが、今後各地で地質と栽培結果を比較することで、より精度の高い事前予測が可能になると期待している。関連として海底火山の痕跡についても言及。

 

岩石が教えてくれる

/** Geminiが自動生成した概要 **/
岩石の種類が土壌の性質に大きく影響する。真砂土の母岩である花崗岩は酸性岩でシリカが多く、有機物が蓄積しにくい。関東ローム層とは異なり、関西の内陸部など花崗岩地帯では、土壌改良に工夫が必要となる。有機物を単純に投入しても効果が薄く、保肥力向上には母岩の性質を理解した対策が重要。このため、関東で研修を受けた人が関西で土壌に苦戦する一方、関西で研修を受けた人は関東で容易に適応できるという現象が生じる。岩石を知ることで、地域による土壌の違いへの理解が深まる。

 

田んぼの表面が緑で染まる

/** Geminiが自動生成した概要 **/
収穫後の水田が緑の草で覆われている。早朝に撮影された写真には、水滴を帯びた葉が鮮やかに写り、まるで緑の絨毯のようだ。この水田は耕起後、急速に草が生育した様子。冬を迎えるにあたり、草の被覆は極端な環境変化から土壌を守る役割を果たす。 この水田では、土壌改良のため「寒起こし」も行われていた。これは先代から受け継がれた知恵であり、長年米作りを続けるための工夫の一つ。継続的な米作りには、このような地道な努力が必要であることが伺える。

 

蛇紋岩で出来た山が近くにある田んぼ

/** Geminiが自動生成した概要 **/
蛇紋岩地帯の田んぼでは、マグネシウム豊富な水が自然と供給されるため、施肥の必要がなくマグネシウム欠乏も起こらない。蛇紋岩は鉄分も含み、美味しい野菜に必要な要素を満たしている。実際に「蛇紋岩米」としてブランド化された例もあり、一見ゴツい名前だが、美味しい米が育つ好条件を示唆している。


Powered by SOY CMS   ↑トップへ