ブログ内検索

micro:bitページ
とにかく速いブログサイトを目指す
検索キーワード:「除草剤」
 

芳香族化合物の基の芳香族アミノ酸

/** Geminiが自動生成した概要 **/
植物は、ベンゼン環を含む芳香族化合物を合成する際に、最初に芳香族アミノ酸のフェニルアラニンを合成します。フェニルアラニンは、光合成で合成された糖の中間物質からシキミ酸経路を経て合成されます。このフェニルアラニンを基に様々な芳香族化合物が合成されます。 ちなみに、除草剤ラウンドアップは、シキミ酸経路に作用して芳香族化合物の合成を阻害することで効果を発揮します。

 

除草剤でBCAA合成に影響があるものはあるか?

/** Geminiが自動生成した概要 **/
除草剤の中には、植物のBCAA合成を阻害するものがあります。特に、ALS(アセト乳酸合成酵素)阻害剤は、BCAA合成の初期段階を阻害することで、イソロイシン、ロイシン、バリンの生成を妨げます。ダイズ栽培では、ALS阻害剤耐性遺伝子組み換えダイズが存在することから、実際にALS阻害剤が使用されている可能性があります。しかし、実際の使用状況については更なる調査が必要です。

 

海外の雑草撲滅法令と日本

/** Geminiが自動生成した概要 **/
道路脇の雑草放置は、海外では罰金対象となるほど重視されています。日本でも輸出時に種子が混入するなど、問題視され始めています。雑草駆除にはコストがかかりますが、葛のように、産業利用できれば解決策になります。例えば、葛は根を食用に、蔓を衣料や工芸品に、葉を飼料にと、様々な活用が可能です。雑草管理をコストと捉えるのではなく、収益源へと転換できるような、企業の取り組みが重要となるでしょう。

 

冬期のレンゲ栽培は田植え後の雑草管理に影響するか?

/** Geminiが自動生成した概要 **/
田植え前のレンゲ栽培が、田植え後の雑草抑制に効果がある可能性を示唆する記事。レンゲ栽培を行った田では、雑草の発生が抑制され水が澄んでいる様子が観察された。レンゲ栽培と鋤き込みが、田の生態系に影響を与え雑草抑制に繋がると推測。一方、一般的な除草剤はオタマジャクシに悪影響を与える可能性があり、結果的にカメムシ等の害虫増加に繋がる可能性も指摘。中干しなしの稲作と合わせて、環境負荷の低い雑草対策の可能性を示唆している。

 

ゴールデンライスにはどんな遺伝子を導入したのだろう?

/** Geminiが自動生成した概要 **/
ゴールデンライスは、胚乳にβカロテンを蓄積するように遺伝子組み換えされたコメです。βカロテン合成経路のうち、コメに欠けていた「GGPPからフィトエン」と「フィトエンからリコペン」の2つの遺伝子を導入することで実現されました。フィトエン合成遺伝子はトウモロコシ、リコペン合成遺伝子はバクテリア由来です。この遺伝子導入により、コメは再びβカロテンを生成できるようになりました。ゴールデンライスは長年の開発期間を経て、フィリピンで商業栽培が開始されています。

 

農薬や化学肥料を使用して栽培すると野菜が育たない環境になるという意見に対して3

/** Geminiが自動生成した概要 **/
この記事では、植物性の有機物を土に投入することの重要性を論じています。 植物性の有機物を土に投入しないと、土の物理性が悪化し、スベリヒユやヤブガラシのような除草剤が効きにくい雑草が生えやすくなります。一方、植物性の有機物を投入した土壌では、シロザのような抜きやすい雑草が生え、除草作業が楽になります。 さらに、トラクターや自走式草刈り機などの機械化と組み合わせることで、理想的な植生管理が可能となり、管理コストの削減と利益率の向上につながると結論付けています。

 

中干しをしないことが稲作の利益率を高める確信を得た

/** Geminiが自動生成した概要 **/
この記事では、中干しを行わない稲作が、収益性向上と環境改善に有効であることを論じています。 従来、中干しは雑草抑制に有効とされていましたが、著者は中干しを行わない田んぼで雑草が生えないことを観察。これは、良好な田んぼの状態がイネのアレロパシー効果を高め、さらに天敵の活動も活発化するためだと推測しています。 中干しは除草剤や殺虫剤の使用増加につながる可能性があり、著者は、周囲の慣習にとらわれず、物理性の改善など、収益性と環境性を両立させる稲作を推奨しています。

 

田からはじめる総合的病害虫管理

/** Geminiが自動生成した概要 **/
中干しをしない稲作は、カエルの大量発生により、IPM(総合的病害虫管理)に貢献する可能性があります。カエルは世代交代の早い害虫を捕食するため、耐性を持つ害虫への対策として有効です。さらに、カエルは水田周辺の畑にも生息範囲を広げ、間接的に畑の害虫駆除にも役立ちます。畑にカエルを誘致するには、緑肥を植えておくことが有効です。緑肥は土壌環境改善にも効果があり、カエルの住みやすい環境を作ります。このように、中干しなしの稲作と緑肥を活用した畑作は、環境に優しく持続可能な農業を実現する可能性を秘めています。

 

水田の細長くて丸い草

/** Geminiが自動生成した概要 **/
水田に生える細長い丸い草は、おそらくホタルイ。イネより背丈が低く、競合している様子もないため、放置しても影響はなさそう。イネの生育が弱い場所に生える傾向があり、土壌の物理性を改善すれば発生を抑えられると考えられる。他の水田雑草についても調査したいが、観察している田んぼでは目立った雑草がなく、水田除草の知識が深まらないのが現状。

 

中干しなしの田の水が澄んでいる

/** Geminiが自動生成した概要 **/
中干しなし、レンゲ後の稲作では、田の水が澄み、雑草が少ない。オタマジャクシが藻や若い草を食べることで除草効果が出ている可能性がある。オタマジャクシは成長後、昆虫を食べるようになるため、稲への影響は少ない。一方、中干しを行う慣行農法では、除草剤を使用する必要があり、コストと手間が増える。さらに、冬季の耕起は米の耐性を下げる可能性もある。中干しなしの田んぼは、オタマジャクシの働きで除草の手間が省け、環境にも優しく、結果としてコスト削減に繋がる可能性がある。

 

一枚の田だけやたらとイヌビエらしき草が生えている

/** Geminiが自動生成した概要 **/
乾土効果とは、土壌を一定期間乾燥させることで、土壌の物理性・化学性・生物性を改善し、作物の生育を促進する効果のこと。物理的には、土壌の団粒化促進、透水性・通気性向上などが挙げられる。化学的には、難溶性養分の可溶化、有害物質の無毒化などが起こる。生物的には、微生物相の変化による病害抑制効果などが期待される。ただし、乾燥期間や土壌の種類によって効果は異なり、過度な乾燥は逆効果となる場合もあるため、適切な管理が必要である。乾土効果を利用することで、化学肥料や農薬の使用量を削減し、環境負荷を低減しながら、安定した収量を得ることが期待できる。

 

木の芽を叩くと放出される香り

/** Geminiが自動生成した概要 **/
カロテノイドは植物にとって光合成補助色素や抗酸化物質として必須の化合物である一方、植物を食べる動物にとってはビタミンAやEの前駆体として重要です。除草剤の中には、このカロテノイド生合成経路を阻害することで植物を枯らすものがあります。具体的には、フィトエン不飽和化酵素を阻害するノルフルラゾンや、ζ-カロテン不飽和化酵素を阻害するピフルジフェンなどがあります。これらの除草剤は、カロテノイドが合成できなくなることで光合成系が破壊され、植物を白化・枯死させます。これはカロテノイドの重要性を示すと同時に、特定の酵素を標的とする除草剤開発の巧妙さを示す例でもあります。

 

家畜糞による土作りの土から収穫した野菜の摂取は健康に繋がるか?

/** Geminiが自動生成した概要 **/
家畜糞堆肥による土作りは、土壌の硝酸態窒素濃度を高め、作物の生育に悪影響を与える。高濃度の硝酸態窒素は根の成長を阻害し、土壌のヒビ割れを引き起こし、根へのガス障害も発生しやすい。結果として、作物は亜鉛などの微量要素を吸収できず、硝酸イオン濃度が高い葉を形成する。このような野菜は栄養価が低く、健康効果は期待できないばかりか、高濃度の硝酸イオンと不足する抗酸化物質により、健康を害する可能性もある。葉のビタミンCが硝酸イオンの影響を相殺するという意見もあるが、酸化ストレスの高い環境ではビタミンCも期待できない。適切な施肥設計で硝酸イオン濃度を抑制し、健康的な野菜を育てることが重要である。

 

高槻の水田でジャンボタニシを見かけた

/** Geminiが自動生成した概要 **/
高槻の水田でジャンボタニシ(スクミリンゴガイ)を発見。その駆除法として、天敵、トラップ、農薬の他、フルボ酸でイネを強化し食害を防ぐ方法や、水管理を徹底しジャンボタニシに除草をさせる方法が挙げられている。中でも注目されている農薬はリン酸第二鉄で、タニシに摂食障害を引き起こし、稲の肥料にもなるため初期生育に有効。つまり、土作りを徹底し、初期生育にリン酸第二鉄を与え、水管理を徹底することが重要。温暖化の影響で越冬生存率が増加しているため、対策の必要性が高まっている。

 

水稲害虫の天敵のこと

/** Geminiが自動生成した概要 **/
冬期灌水のような環境保全型稲作でも、肥料成分が過剰になると害虫被害が増加する。農薬による防除は害虫の抵抗性や天敵への影響で効果が薄れるため、作物の抵抗性と天敵に着目すべきである。静岡県の研究では、水田のクモ類に着目し、コモリグモ科は米ぬか区、アシナガグモ科はレンゲ区で個体数が多いことがわかった。通常栽培区ではどちらのクモも少なかった。米ぬかは亜鉛豊富な有機質肥料だが、課題も多い。レンゲによる土作りが天敵の増加に繋がる可能性があり、今後の研究が期待される。

 

薄い色の花弁のアサガオからフラボノイドのことを考える

/** Geminiが自動生成した概要 **/
薄い花弁のアサガオの生育不良と黄緑色の葉の関連性について考察した記事です。生育の遅延は、フラボノイドの合成量の低下が原因だと推測されています。 通常、植物は紫外線対策としてフラボノイドを葉に蓄積しますが、合成量が減少すると紫外線による活性酸素の発生が増加し、活性酸素除去のためにグルタチオン合成にアミノ酸が消費されます。結果として成長に必要なアミノ酸が不足し、生育が遅延すると考えられています。 記事では、青色色素合成酵素の欠損ではなく、フラボノイド自体の合成量の低下が原因であると推測しています。その理由は、もし酵素が欠損しているだけであれば、中間生成物である黄色や赤の色素が蓄積し、花弁や葉がこれらの色になるはずだからです。この黄葉の性質は、今後のアサガオ栽培における一つの知見となります。

 

亜鉛欠乏と植物のオートファジー

/** Geminiが自動生成した概要 **/
植物の生育に必須な亜鉛の欠乏とオートファジーの関係性について解説した記事です。亜鉛欠乏土壌は世界的に広がっており、亜鉛は植物のタンパク質合成に必須であるため、欠乏は深刻な問題です。亜鉛は金属酵素の補因子であるため、再利用にはオートファジーによるタンパク質分解が必要です。亜鉛欠乏下では、オートファジーによって亜鉛が再分配され、活性酸素を除去する酵素Cu/Zn SODなどに利用されます。オートファジーが機能しないと活性酸素が蓄積し、葉が白化するクロロシスを引き起こします。亜鉛のオートファジーは植物の生育、ひいては秀品率に大きく関与するため、重要な要素と言えるでしょう。

 

植物のオートファジー

/** Geminiが自動生成した概要 **/
植物は、光合成産物をソースからシンクへ輸送する際にオートファジーが関与している。オートファジーとは、細胞内タンパク質の分解機構で、栄養不足時や病原菌排除時に機能し、分解産物は再利用される。植物ではマクロオートファジーとミクロオートファジーが確認されている。葉緑体のオートファジーには、徐々に小さくしていくRCB経路と、そのまま飲み込むクロロファジーの2パターンが存在し、光合成の調整にも関与すると考えられる。このメカニズムの理解は、作物の秀品率向上に繋がる可能性がある。

 

カロテノイドの先にあるもの

/** Geminiが自動生成した概要 **/
この記事では、カロテノイドが植物ホルモンの前駆体となり、植物の成長や健康に重要な役割を果たすことを解説しています。特に、ゼアキサンチンからアブシジン酸、β-カロテンからストリゴラクトンという植物ホルモンが生成される過程が紹介されています。ストリゴラクトンは主根伸長促進、形成層発達制御、菌根菌との共生シグナルといった機能を持ち、台風の被害軽減や秀品率向上に有効です。菌根菌との共生は微量要素の吸収効率を高めるため、亜鉛の吸収促進にも期待できます。そして、カロテノイドを増やすためには光合成を高めることが重要だと結論付けています。

 

カロテノイド生合成阻害の除草剤を見る

/** Geminiが自動生成した概要 **/
酸素発生型光合成の誕生以前、初期生命は嫌気呼吸でエネルギーを得ていた。やがて光合成細菌が出現し、硫化水素や水などを利用した光合成が始まった。しかし、これらの光合成は酸素を発生しない。シアノバクテリアの出現により、水を電子供与体とする酸素発生型光合成が始まり、地球環境は劇的に変化した。酸素の増加は大酸化イベントを引き起こし、嫌気性生物は衰退する一方で、酸素を利用した好気呼吸を行う生物が進化する道を開いた。この酸素発生型光合成は現在の植物にも受け継がれている。

 

健康的に生きる上でカロテノイドが大事だから蓄積するのだろう

/** Geminiが自動生成した概要 **/
この記事は、カロテノイドの重要性を卵の黄身の色を例に挙げ、健康への効果を解説しています。鮮やかな黄身は人工的でなく、親鳥が雛にカロテノイドという有益な物質を与えている証拠だと述べています。カロテノイドとフラボノイドは、植物が紫外線から身を守るために獲得した抗酸化物質であり、人間が摂取することで同様の効果が得られると説明。具体的には、免疫細胞の保護や殺菌後の活性酸素除去に役立つことを学術論文を引用して示し、ウイルス感染症の重症化抑制にも繋がると推測しています。そして、作物におけるカロテノイド増加の方法を探るには、除草剤のような減少させる仕組みを調べるのが有効であり、PDS阻害剤のようなカロテノイド合成を阻害する除草剤の存在を例に挙げています。

 

香り化合物の合成経路から見えてくること

/** Geminiが自動生成した概要 **/
植物の香り化合物(GLV)は、葉が損傷を受けた際にガラクト糖脂質から合成され、害虫や病害に対する防御機構として機能する。GLV合成経路の研究から、ヘキセナールなどの化合物が病害抵抗性に寄与することが示唆されている。このことから、草生栽培において、定期的な草刈りによって放出される香り化合物が作物の耐性を高める可能性が考えられる。逆に、除草剤の使用は香り化合物の放出機会を奪い、食害被害の増加につながる可能性がある。これは、殺菌剤使用による食害増加と同様に、栽培における新たな課題を示唆している。

 

免疫の向上の要は亜鉛かもしれない

/** Geminiが自動生成した概要 **/
免疫力向上に亜鉛が重要だが、現代の農業 practices が土壌の亜鉛欠乏を招き、人体への供給不足につながっている。慣行農法におけるリン酸過剰施肥、土壌への石灰散布などが亜鉛欠乏の要因となる。また、殺菌剤の過剰使用は菌根菌との共生を阻害し、植物の亜鉛吸収力を低下させる。コロナ感染症の肺炎、味覚障害といった症状も亜鉛欠乏と関連付けられるため、作物栽培における亜鉛供給の改善が急務である。

 

肥料の選定に迷ったら開発の話を確認しよう

/** Geminiが自動生成した概要 **/
肥料選びに迷う際は、開発の経緯も参考にすべきである。例えば、光合成促進を目的とするなら、ヘム合成材料であるアミノレブリン酸を主成分とする肥料が適している。一方、各種アミノ酸混合肥料は、災害後の回復促進にも有効だ。アミノレブリン酸は元々は除草剤として開発され、低濃度で生育促進効果が見つかった経緯を持つ。そのため、高濃度散布はリスクを伴う可能性がある。生育促進と災害回復では肥料の使い分けが重要で、前者はサプリメント、後者は運動後や風邪時に摂取するアミノ酸食品に例えられる。つまり、状況に応じて適切な肥料を選択することが重要である。

 

初春に畑を占拠するナズナたちに迫る

/** Geminiが自動生成した概要 **/
畑の土壌が作物に適した状態になると、ハコベ、ナズナ、ホトケノザといった特定の草が生えやすくなる。強靭なヤブガラシが消え、これらの草が繁茂するのはなぜか。除草剤耐性でも発芽の速さでも説明がつかない。何か別の理由があるはずだが、それはナズナには当てはまらないようだ。用水路脇の隙間に生えるナズナを観察すると、根元にコケが生えている。コケが作った土壌にナズナの種が落ちたのが繁茂の理由だろうか?この謎について、思い浮かぶことがあるが、それは次回以降に持ち越す。

 

藍藻から発見された植物の芳香族アミノ酸等の合成を阻害する糖

/** Geminiが自動生成した概要 **/
藍藻の一種 *Synechococcus elongatus* が産生する希少糖7-デオキシセドヘプツロース (7dSh) は、植物のシキミ酸経路を阻害する。シキミ酸経路は芳香族アミノ酸や特定の植物ホルモンの合成に必須であるため、7dShは植物の生育を阻害する。この作用は除草剤グリホサートと類似しており、シロイヌナズナを用いた実験で生育阻害効果が確認された。7dShは酵母など他の生物にも影響を与える。微細藻類である藍藻の研究はこれまで困難だったが、急速な研究進展により、7dShのような新規化合物の発見につながり、除草剤開発などへの応用が期待される。

 

アーバスキュラ菌根菌が好む環境を探る

/** Geminiが自動生成した概要 **/
アーバスキュラ菌根菌は、リン酸などの養分吸収を助けるため、共生関係を築ける環境作りが重要。土壌に水溶性養分や糖分が多いと共生しにくいため、過剰な施肥は避けるべき。ネギの菌根菌はネギだけでなく緑肥とも共生するため、除草剤で全て除去するのではなく、通路などに緑肥を栽培すると共生菌が増加。クローバーの根圏は共生菌が豊富との報告もあり、緑肥は土壌の物理性改善だけでなく肥料効率向上にも貢献する可能性がある。

 

マルバツユクサは地中でも花を形成する

/** Geminiが自動生成した概要 **/
ミカン栽培をやめた畑にマルバツユクサが大量発生した。マルバツユクサは地上と地下の両方で種子を作り、地下の種子は土壌中で長期間休眠できる。ミカン栽培中は発芽が抑制されていたマルバツユクサの種子が、栽培終了後の土壌移動や環境変化により発芽条件を満たし、一斉に発芽したと考えられる。ミカン栽培開始以前から土壌中に存在していた種子が、長年の休眠から目覚めた可能性が高い。これは、ミカン栽培による塩類集積の解消にも役立っているかもしれない。

 

防御の基礎は芳香族のアミノ酸にあり

/** Geminiが自動生成した概要 **/
植物ホルモンのサリチル酸生合成の解明をきっかけに、芳香族アミノ酸であるチロシンとフェニルアラニンの関係が注目された。チロシンはベンゼン環にヒドロキシ基を持つのに対し、フェニルアラニンは持たない。動物ではフェニルアラニンからチロシンが合成される。植物では、シキミ酸経路においてシキミ酸からプレフェン酸を経て、チロシンとフェニルアラニンが合成される。また、サリチル酸生合成に関わるコリスミ酸もシキミ酸経路で生成される。シキミ酸経路は植物色素、リグニン、ABAなど様々な物質の合成に関与している。

 

ワルナスビが猛威を振るう

/** Geminiが自動生成した概要 **/
鴨川の河川敷でワルナスビが繁茂している。可愛らしいナスやトマトに似た花を咲かせるが、茎には棘があり、根は深く、地下茎で広がる厄介な植物だ。牧野富太郎博士が命名したこのワルナスビは、ソラニンという毒を持ち、除草も困難なため、動物や植物にとってまさに「悪」である。 不思議なことに、ワルナスビの群生は河川敷の一角に集中しており、少し離れると見られない。初夏には赤クローバが繁茂する場所で、数年前からこの関係性は変わらない。ワルナスビの苦手な環境があるのか、人の努力で抑制されているのか、その理由は不明だ。

 

紅に色づく葉の内部で

/** Geminiが自動生成した概要 **/
リン酸欠乏になると、植物の葉は赤や紫に変色することがあります。これはアントシアニンの蓄積によるものですが、なぜリン酸欠乏でアントシアニンが蓄積するのかは完全には解明されていません。記事では、リン酸欠乏が糖の蓄積を招き、それがアントシアニン合成の基質となる可能性や、ストレス応答としてアントシアニンが合成される可能性について考察しています。また、アントシアニンは紫外線吸収や抗酸化作用を持つため、リン酸欠乏による光阻害ストレスからの防御機構として機能している可能性も示唆しています。さらに、リン酸欠乏と紅葉の関連性についても触れ、今後の研究の進展に期待を寄せています。

 

グリホサート耐性を獲得する

/** Geminiが自動生成した概要 **/
グリホサートは、植物の必須酵素EPSPSを阻害する除草剤です。しかし、遺伝子組み換えにより、グリホサートを分解する酵素GOXを持つ、あるいはグリホサートが結合しない変異型EPSPSを持つ作物が作られました。前者が主流です。自然界でも同様の変異が起こっており、除草剤が効かない雑草の出現の原因となっています。これは、土壌細菌との遺伝子交換による可能性も示唆されています。

 

グリホサートは植物体内の何を潰す?

/** Geminiが自動生成した概要 **/
グリホサートは除草剤ラウンドアップの有効成分で、植物体内の酵素EPSPSを阻害することで除草効果を発揮します。EPSPSは植物ホルモンやアミノ酸合成の初期段階に関わる重要な酵素で、グリホサートによってこの働きが阻害されると植物は生育に必要な物質を合成できなくなり、枯れてしまいます。 次の記事では、このグリホサートへの耐性を植物がどのように獲得するかについて解説されています。

 

オーガニックの野菜は美味しくなりやすい

/** Geminiが自動生成した概要 **/
天候不順による日照不足と過湿は野菜の生育に悪影響を与える。特に、過湿による土壌の酸素不足は根の伸長を阻害し、ミネラル吸収量の減少、ひいては野菜の不味さにつながる。排水性の良い畑では、このような悪影響を軽減できる。 慣行農業における除草剤の使用は、土壌を固くし、水はけを悪くする要因となる。一方、オーガニック農法では除草剤を使用しないため、土壌に根が張りやすく、排水性が良くなる。結果として、根の伸長が促進され、ミネラル吸収量が増加し、美味しい野菜が育つ可能性が高まる。つまり、除草剤の使用有無が野菜の品質、ひいては収量に影響を与えるため、オーガニック野菜は天候不順時にも比較的安定した収穫と美味しさを維持できる可能性がある。

 

ラウンドアップという除草剤の今後は?

/** Geminiが自動生成した概要 **/
ラウンドアップの有効成分グリホサートは、植物の必須アミノ酸合成経路を阻害することで除草効果を発揮する。しかし、論文によればグリホサートは人体において重要な酵素シトクロムP450の働きを抑制し、アルツハイマー病、癌、糖尿病などのリスクを高める可能性がある。シトクロムP450は解毒作用やステロイド合成に関与し、植物にも存在する。仮に植物のシトクロムP450がグリホサートによって阻害されれば、植物は一時的に無防備な状態になり、ダメージを受ける可能性がある。イネではシトクロムP450の候補遺伝子が多数発見されているものの、機能は未解明な部分が多く、グリホサートの影響を断言できない。そのため、分解が早くてもラウンドアップの安全性を断定するのは難しい。

 

遺伝子組み換え作物の摂取で癌が減らせるとしたら?

/** Geminiが自動生成した概要 **/
遺伝子組み換え作物への抵抗感について考察。第一世代の除草剤耐性や害虫抵抗性といった生産者側のメリットに注目した遺伝子組み換えに対し、第二世代は栄養価向上や免疫向上といった消費者側のメリットを重視している。仮に癌軽減効果を持つ物質を産生する遺伝子組み換え作物が開発された場合、健康への直接的な恩恵があっても、依然として「非生物的」「異種遺伝子」といった理由で拒否反応を示す人がいるだろうか?物質を抽出する形であれば抵抗感は減るだろうか?遺伝子組み換え技術に対する議論は、今後このような安全性と健康効果のバランスに関する論点に移行していくと予想される。

 

ヤブガラシは葉物野菜に巻き付く

/** Geminiが自動生成した概要 **/
ヤブガラシは除草剤が効かず、葉物野菜に巻き付いてしまう厄介な雑草。知人の畑ではネギに絡みつき、除草剤散布後もヤブガラシだけが残ってしまった。手で抜くしか方法がないが、巻きひげが作物を傷つけるため、除草剤散布後の手作業も重労働となる。ヤブガラシへの効果的な対策がなく、農家にとって大きな負担となっている。しかし、筆者はヤブガラシに関する面白い発見をしたようで、次回に続く。

 

アミノレブリン酸はもともと除草剤として考えられていた

/** Geminiが自動生成した概要 **/
アミノレブリン酸は、ポルフィリン生成に関与し、過剰だと活性酸素で植物を枯らす除草剤として研究されていた。しかし、大量に必要で、少量だと逆に植物の生育を促進する効果が見つかり、肥料としての用途が検討された。つまり、ポルフィリンは少量で生育促進、過剰で活性酸素による枯死を引き起こす。肥料としてアミノレブリン酸を使用する場合は、過剰施肥による活性酸素発生、枯死のリスクを避けるため、適量を守る必要がある。

 

アミノレブリン酸のポテンシャル

/** Geminiが自動生成した概要 **/
アミノレブリン酸(ALA)は、植物の葉緑素や赤血球成分など重要な物質の前駆体。ALA合成には硝酸還元に必要なシロヘムの生成に鉄が必要で、ALA周辺分子が不足すると硝酸利用効率が低下する。光合成不足では硝酸態窒素が活用されない点と合致する。鉄は二価鉄である必要があり、有機物由来の電子で三価鉄が還元されるため、糖の潤沢な供給が重要。ALA肥料は鉄、マグネシウムとの併用で効果を発揮するが、高濃度では除草剤となるため注意が必要。ALAは多くの生物が必要とするため元肥効果は限定的だが、特定状況下では大きな効果が期待できる。


Powered by SOY CMS   ↑トップへ