ブログ内検索

プログラミング教材開発
大阪府高槻市原地区で肥料教室を開いています

カテゴリー : 稲作/page-4

 

秋の荒起こしから秀品率の向上のポイントを探る

/** Geminiが自動生成した概要 **/
高槻の原生協コミュニティルームでレンゲ米栽培の観測報告会が行われました。レンゲ米栽培は、田植え前にレンゲを育てて緑肥として利用する農法です。報告では、レンゲの鋤き込みによる土壌への窒素供給、雑草抑制効果、生物多様性への影響など、様々な観点からの調査結果が発表されました。特に、レンゲが土壌に供給する窒素量とイネの生育の関係、鋤き込み時期の調整による雑草抑制効果の最適化などが議論の中心となりました。また、レンゲ畑に集まる昆虫の種類や数、水田の生物多様性への影響についても報告があり、レンゲ米栽培が環境保全に貢献する可能性が示唆されました。一方で、レンゲの生育状況のばらつきや、過剰な窒素供給による水質汚染への懸念点も指摘され、今後の課題として改善策の検討が必要とされました。

 

乾土効果について考える

/** Geminiが自動生成した概要 **/
高槻の原生協コミュニティルームでレンゲ米栽培の観測報告会が行われました。レンゲの生育状況、土壌分析結果、収穫量などが報告され、レンゲ栽培による土壌改善効果や収量への影響について議論されました。生育初期は雑草の影響が見られましたが、レンゲの成長に伴い抑制されました。土壌分析では、レンゲ栽培区で窒素含有量が増加し、化学肥料の使用量削減の可能性が示唆されました。収量については慣行栽培区と有意差は見られませんでしたが、食味についてはレンゲ米が良好との評価がありました。今後の課題として、雑草対策の改善や、レンゲ栽培による更なる土壌改善効果の検証などが挙げられました。

 

レンゲ米栽培の田の冬のレンゲの様子

/** Geminiが自動生成した概要 **/
この記事では、レンゲ米栽培の田んぼにおける冬のレンゲの様子を観察し、成長の違いから米の品質向上へのヒントを探っています。晩秋の播種のため、レンゲの生育は遅く、寒さで葉は紫色に変色しています。ところが、田んぼの一部で繁茂するイネ科の草の根元では、レンゲの葉の色が紫色ではなく、成長も良好です。これは、イネ科の草による遮光で、アントシアニンの合成が抑制され、その分の養分が成長に回されたためと考えられます。通常、レンゲは日陰を好みますが、過剰なアントシアニン合成はリン酸欠乏などのストレス反応である可能性も示唆されています。この記事は、イネ科の草とレンゲの共存関係に着目することで、レンゲの生育、ひいては米の品質向上に繋がる新たな知見を得られる可能性を示唆しています。

 

花の色素と稲作と

/** Geminiが自動生成した概要 **/
筆者は、ウンカの被害が深刻な年において、レンゲ米栽培と農薬不使用にも関わらず稲作が成功した事例に関わった。コロナ渦の外出自粛中に花と昆虫を観察したことが契機となり、植物の色素や花粉、蜂蜜の研究へと繋がった。蜂蜜の健康効果の知見から植物の耐性との関連性を見出し、稲作に応用した結果、ウンカ耐性を持つ稲を収穫できた。この成功は、中干しの技術見直しや川からの恩恵の活用といった、日本の稲作に足りない知見を得る大きな成果となった。収穫後の土壌は研究者に提供され、更なる分析が期待される。

 

ウンカに食害された株とそうでない株の収穫跡

/** Geminiが自動生成した概要 **/
レンゲ米栽培の水田で、イネの初期生育の遅れがその後の生育にどう影響するかを観察した。レンゲのすき込み時期の違いにより、初期生育の遅い区画と早い区画が生じた。生育初期には、遅い区画ではイネの分けつ数が少なく、草丈も低かった。しかし、生育後期にはこの差は縮まり、最終的な収量は両区画でほぼ同等だった。これは、初期生育の遅れが、分けつの増加を抑制する一方、個々の茎の太さを増加させることで補償されたためと考えられる。つまり、初期生育の遅れは、イネの生育戦略を「量」から「質」へと変化させ、最終的な収量を確保したと言える。このことから、レンゲのすき込み時期を調整することで、イネの生育を制御できる可能性が示唆された。

 

レンゲの播種は稲作収穫後のすぐ後

/** Geminiが自動生成した概要 **/
レンゲ米栽培では、稲刈り後のレンゲの播種時期が重要となる。10月下旬が播種限界の中、10月上旬が一般的な播種時期とされている。しかし、稲刈り後、レンゲ播種までの期間が短いため、藁の腐熟が問題となる。藁をそのまま鋤き込むとC/N比の問題が発生するため、粘土鉱物と藁を混ぜることで藁の炭素化合物の量を減らし、土壌化を促進する方法が有効と考えられる。レンゲの播種時期を考慮すると、木質有機物ではなく、粘土鉱物と藁のみの組み合わせが有効な可能性がある。

 

ヒメトビウンカの越冬からウンカの防除を考える

/** Geminiが自動生成した概要 **/
レンゲ米の品質向上には、レンゲの生育と窒素固定量の確保が鍵となる。そのため、適切な播種時期と量、リン酸肥料の施用が重要。特に、レンゲの生育初期にリン酸が不足すると、その後の生育と窒素固定に悪影響が出るため、土壌診断に基づいたリン酸施用が推奨される。また、レンゲの生育を阻害する雑草対策も必要。除草剤の使用はレンゲにも影響するため、適切な時期と種類を選ぶ必要がある。さらに、レンゲの開花時期と稲の生育時期を調整することで、レンゲ由来の窒素を効率的に稲に供給できる。収穫後のレンゲ残渣の適切な管理も重要で、すき込み時期や方法を工夫することで、土壌への窒素供給を最適化できる。これらの要素を総合的に管理することで、レンゲ米の品質向上と安定生産が可能となる。

 

高槻の原生協コミュニティルームでレンゲ米栽培の観測の報告会を行いました

/** Geminiが自動生成した概要 **/
高槻の生協コミュニティルームで、レンゲ米栽培の観測報告会が行われました。報告会は、近隣の慣行栽培田と比較できる好条件下で観測できたレンゲ米栽培の知見を共有し、来年に活かすことを目的としていました。 生育過程で何度か不安な場面があり、それらを整理・分析しました。観測は1作目ですが、温暖化による猛暑日増加で米作りが難しくなる中、レンゲ米栽培は有望な対策となる可能性が示唆されました。ただし、レンゲ米栽培は単にレンゲの種を蒔けば良いわけではなく、事前の土作りが重要で、怠ると逆効果になることにも言及されました。 報告会では、稲の生育状況、中干しの意義、猛暑日対策、レンゲ栽培時の注意点など、多岐にわたるテーマが議論されました。

 

収穫後の田のひこばえを見て、稲作の未来を考える

/** Geminiが自動生成した概要 **/
亜鉛は植物の生育に必須の微量要素であり、欠乏すると生育不良や収量低下を引き起こす。亜鉛は様々な酵素の構成要素や活性化因子として機能し、タンパク質合成、光合成、オーキシン生合成などに関与する。亜鉛欠乏下では、植物はオートファジーと呼ばれる細胞内成分の分解・再利用システムを活性化させる。これにより、古いタンパク質や損傷したオルガネラを分解し、得られたアミノ酸などの栄養素を再利用することで、生育に必要な資源を確保し、ストレス耐性を向上させている。特に、葉緑体の分解は亜鉛の再転流に重要であり、新しい葉の成長を支えている。したがって、オートファジーは亜鉛欠乏への適応戦略として重要な役割を果たしている。

 

ジャンボタニシの対策の前に生態を知ろう

/** Geminiが自動生成した概要 **/
ジャンボタニシ対策には生態の理解が重要。徳島市は椿油かすの使用を控えるよう注意喚起している。ジャンボタニシは乾燥に強く、秋にはグリセロールを蓄積して耐寒性を上げるが、-3℃でほぼ死滅する。ただし、レンゲ栽培による地温上昇で越冬する可能性も懸念される。レンゲの根の作用で地温が上がり、ジャンボタニシの越冬場所を提供してしまうかもしれない。理想は、緑肥によってジャンボタニシの越冬場所をなくすことだが、乾燥状態のジャンボタニシに椿油かすのサポニンを摂取させるタイミングが課題となる。

 

観測していたレンゲ米栽培の田が無事に収穫を迎えたそうです

/** Geminiが自動生成した概要 **/
観測対象のレンゲ米水田は、ウンカの当たり年にも関わらず無農薬で収穫を達成した。驚くべきことに、近隣の殺虫剤を使用した水田ではウンカ被害が発生した。この水田は冬期にレンゲを栽培し、土壌改良材を用いて土壌を改善していた。レンゲ鋤込み後の土壌は、軽くて小さな塊の状態になっていた。一方、他のレンゲ栽培水田ではウンカ被害が多かった。このことから、ミツバチによるレンゲの花蜜と花粉の持ち出しが、ウンカ発生に影響を与えている可能性が示唆される。次作では今作の知見を活かし、秀品率向上を目指す。

 

ヒガンバナのアルカロイド

/** Geminiが自動生成した概要 **/
ニセアカシアはアレロパシー作用を持つため、周囲の植物の生育を阻害する。この作用は、ニセアカシアの葉や根から放出される化学物質、特にロビネチンとジヒドロロビネチンによるものと考えられる。これらの物質は、他の植物の種子発芽や成長を抑制する効果があり、ニセアカシアの競争力を高めている。土壌中の窒素固定能力も高く、他の植物の窒素吸収を阻害する可能性も指摘されている。これらの作用により、ニセアカシアは周囲の植物相を変化させ、単一的な植生を形成する傾向がある。

 

基肥のリン酸が発根促進である理由を考えてみる

/** Geminiが自動生成した概要 **/
リン酸がイネの発根促進に繋がるメカニズムを考察した記事です。発根促進物質として知られるイノシンに着目し、その前駆体であるイノシン酸の生合成経路を解説しています。イノシン酸は、光合成産物であるグルコースにリン酸が付加されたリボース-5-リン酸を経て合成されます。つまり、リン酸の存在がイノシン酸の合成、ひいてはイノシン生成による発根促進に重要であると示唆しています。さらに、リン酸欠乏時には糖がフラボノイド合成に回され、葉が赤や紫に変色するという現象との関連性にも言及しています。

 

ウンカは水生生物の生態系にとって重要であるらしい

/** Geminiが自動生成した概要 **/
農環研ニュースNo.107(2015.7)は、水田生態系における農薬の影響を評価するため、アマガエル幼生を用いた農薬感受性試験を実施した。27種の水稲用農薬を対象に、急性毒性試験と催奇形性試験を実施。急性毒性試験では、殺虫剤が最も毒性が高く、次いで殺菌剤、除草剤の順であった。ネオニコチノイド系殺虫剤は特に毒性が高く、致死濃度は他の殺虫剤より100倍以上低い値を示した。催奇形性試験では、一部の殺虫剤と殺菌剤で奇形が確認された。この研究は、水田生態系保全のためには、農薬の種類や使用量を適切に管理する必要があることを示唆している。特に、ネオニコチノイド系殺虫剤の使用には注意が必要である。

 

高槻の水田でジャンボタニシを見かけた

/** Geminiが自動生成した概要 **/
高槻の水田でジャンボタニシ(スクミリンゴガイ)を発見。その駆除法として、天敵、トラップ、農薬の他、フルボ酸でイネを強化し食害を防ぐ方法や、水管理を徹底しジャンボタニシに除草をさせる方法が挙げられている。中でも注目されている農薬はリン酸第二鉄で、タニシに摂食障害を引き起こし、稲の肥料にもなるため初期生育に有効。つまり、土作りを徹底し、初期生育にリン酸第二鉄を与え、水管理を徹底することが重要。温暖化の影響で越冬生存率が増加しているため、対策の必要性が高まっている。

 

水稲害虫の天敵のこと

/** Geminiが自動生成した概要 **/
冬期灌水のような環境保全型稲作でも、肥料成分が過剰になると害虫被害が増加する。農薬による防除は害虫の抵抗性や天敵への影響で効果が薄れるため、作物の抵抗性と天敵に着目すべきである。静岡県の研究では、水田のクモ類に着目し、コモリグモ科は米ぬか区、アシナガグモ科はレンゲ区で個体数が多いことがわかった。通常栽培区ではどちらのクモも少なかった。米ぬかは亜鉛豊富な有機質肥料だが、課題も多い。レンゲによる土作りが天敵の増加に繋がる可能性があり、今後の研究が期待される。

 

冬期灌水有機栽培水田でトビイロウンカの被害が増えた報告から得られること

/** Geminiが自動生成した概要 **/
愛媛県で行われた調査で、冬期湛水有機栽培水田でトビイロウンカの被害が増加した。冬期湛水によりイネの草丈、茎数、葉色が乾田より増加し、窒素含有量が高まったことが被害増加の要因と推測される。冬期湛水は有機物の分解を促進し養分吸収効率を高めるが、土壌の物理性改善効果は無く、窒素吸収がミネラル吸収を上回る傾向にある。調査地は花崗岩帯のため、川の水からミネラル補給は期待できない。ケイ酸含有量は冬期湛水と乾田で差が小さかった。窒素過多でミネラル不足のイネはウンカに弱いため、ケイ酸苦土肥料などでミネラルバランスを整える必要がある。

 

カメムシが殺虫剤の抵抗性を得る仕組み

/** Geminiが自動生成した概要 **/
カメムシは、殺虫剤を無毒化する細菌と共生することで殺虫剤抵抗性を獲得している。カメムシの消化管には共生細菌を宿す器官があり、土壌中の細菌から共生相手を選んでいる。殺虫剤も土壌微生物によって分解されるため、殺虫剤の使用は抵抗性を持つ細菌の増殖を促進する。地域一斉の農薬散布は、この現象を加速させ、カメムシの抵抗性獲得を早め、益虫を死滅させる。結果として害虫は増加し、農薬使用の悪循環に陥る。農薬被害軽減のためには、農薬使用からの脱却が急務となっている。

 

レンゲ栽培の田のイネの出穂数を見てみる

/** Geminiが自動生成した概要 **/
猛暑日が続く中、中干しの効果について再検討が求められている。伝統的に中干しは土壌の亀裂を促し、根の成長を促進するとされているが、近年の猛暑下では土壌が極度に乾燥し、かえって根の生育を阻害する可能性がある。特に、保水性の高い圃場では過度な乾燥は逆効果となる。さらに、中干しによる急激な乾燥はイネにストレスを与え、生育に悪影響を及ぼす恐れもある。そのため、猛暑日が多い年には中干しの期間を短縮したり、土壌水分計などを活用して土壌の状態を適切に管理したりするなど、柔軟な対応が必要となる。また、品種や栽培方法によっても最適な中干しの方法は異なるため、それぞれの状況に合わせた対応が重要である。

 

放棄された田はカヤツリグサでも生き残れない

/** Geminiが自動生成した概要 **/
耕作放棄された水田は深刻なひび割れが生じ、土壌が劣化している。稲作はおろぼず、通常強いカヤツリグサさえも枯死していることから、土壌劣化の末期状態と考えられる。カヤツリグサ科の植物は土壌が固い場所を好むため、これらの植物の出現は土壌劣化、特に土壌の弾力低下を示す指標となる可能性がある。この状態では、緑肥を蒔いても効果は期待できない。土壌の劣化は作物の発根を阻害するため、カヤツリグサ科の植物の繁茂は、栽培を見送る、あるいは堆肥を増やすなどの対策が必要なサインとなる。

 

ケイ素を利用する細菌たち

/** Geminiが自動生成した概要 **/
水田土壌中の細菌がイネのケイ素吸収に関与する可能性が示唆されている。ケイ素を取り込む細菌24株は全てバチルス属で、食中毒菌のセレウス菌(B.cereus)や生物農薬に使われるBT剤(B. thuringiensis)なども含まれる。バチルス属はケイ素の殻を作ることで過酷な環境を生き抜くとされ、B.cereusはケイ素により耐酸性を得ている可能性がある。ケイ素の吸収にはマンガン、亜鉛、カルシウム、鉄等のミネラルが必要で、特に水田で欠乏しやすい亜鉛の供給が重要となる。土壌中の細菌がケイ素を吸収しやすい環境を整えることで、猛暑下でもイネの秀品率維持に繋がる可能性がある。

 

ケイ酸苦土肥料から稲作を模索する

/** Geminiが自動生成した概要 **/
ケイ酸苦土肥料を用いた稲作の可能性を探る記事。ケイ酸は稲作に有効だが、風化しにくい石英ではなく、風化しやすいケイ酸塩鉱物である必要がある。ケイ酸苦土肥料の原料は蛇紋岩で、風化しやすいネソケイ酸塩であるかんらん石が変質して生成される蛇紋石を主成分とする。水田上流にこれらの岩石が存在し、水路がコンクリートで固められていない環境であれば、ケイ酸が水田に供給され、猛暑でも登熟不良を起こしにくい稲作が可能になる可能性がある。しかし、そのような環境は標高の高い涼しい地域に限られる。蛇紋石とかんらん石に加え、緑泥石の活用にも言及。さらに、植物が利用できるケイ酸は、微生物が鉱物から溶出したものが多いと指摘している。

 

猛暑日が多い中で中干しの意義を再検討する

/** Geminiが自動生成した概要 **/
猛暑日が続く中、稲作における中干しの意義を再検討する必要がある。高温は光合成の低下や活性酸素の増加につながり、葉の寿命に悪影響を与える。中干しは発根促進効果がある一方、高温時に葉温上昇を招く可能性もある。レンゲ栽培田では中干しによるひび割れがないにも関わらず、高温に耐えているように見える。ケイ酸質肥料は高温時の光合成を改善し、特に中干し後の幼穂形成期に吸収量が増加する。ケイ酸吸収が少ないと気孔の開きが悪くなり、葉温上昇につながる。また、珪藻等の微細藻類の殻は、植物が吸収しやすいシリカの形になりやすい可能性がある。

 

中干し後のレンゲ米栽培の田の様子

/** Geminiが自動生成した概要 **/
レンゲ米栽培田と慣行栽培田を比較観察した結果、中干し後、慣行栽培田では葉色が薄くなっているのが確認された。これは幼穂形成期における養分転流の影響と考えられる。養分転流は微量要素の移動にも関わり、根の活性が高いと新葉での転流利用率は低下する。サイトカイニンは葉の老化抑制に作用するため、発根が盛んなレンゲ米栽培田では葉色が濃いまま維持されている可能性がある。猛暑時期の光合成を盛んにするには、地温・外気温・紫外線対策といった水管理が重要となる。

 

開花させることが前提のレンゲを栽培する時に注意すべきこと再び

/** Geminiが自動生成した概要 **/
本記事は、開花前提のレンゲ栽培が稲作に与える影響を深掘りする。以前指摘したミツバチによる花粉持ち出しに加え、整備された用水路からのミネラル(特に亜鉛)補給が期待できない点が新たに判明した。米や米ぬかでも亜鉛は持ち出されるため、流入が少なく持ち出しが多い現状で、レンゲの花粉によってさらに亜鉛が持ち出されると、土壌の微量要素欠乏が促進される。これは、レンゲ米だけでなく全ての稲作において、年々品質低下を招く可能性があるため、亜鉛の持ち出しを常に意識する必要があると警鐘を鳴らしている。

 

イネの秀品率を高める為に不定根に着目する

/** Geminiが自動生成した概要 **/
イネの秀品率向上には不定根の発生が重要である。植物ホルモン、オーキシンとサイトカイニンの相互作用が根と脇芽の成長に影響する。オーキシンは根の成長を促進し、サイトカイニンは脇芽の成長を促進する。オーキシンは細胞増殖を調整することで、茎の光屈性や根の重力屈性といった器官形成にも関与する。細胞壁の緩みや核の位置の変化による局所的な細胞分裂の調整は、今後の課題として残されている。

 

稲作の虫害防除の今後を考える

/** Geminiが自動生成した概要 **/
稲作におけるカメムシ被害対策として、ネオニコチノイド系殺虫剤が使用されているが、人体やミツバチへの影響が懸念され、使用禁止の可能性が高まっている。代替手段として、レンゲ米の栽培が注目される。レンゲの鋤き込みは炭素固定量を増やし、冬季の雑草管理も軽減できる。一方、暖冬によるカメムシ越冬数の増加は、殺虫剤耐性を持つ害虫の出現など、深刻な農業被害をもたらす可能性がある。殺虫剤に頼らない栽培体系の確立が急務であり、レンゲ米はその有力な選択肢となる。さらに、殺菌剤の使用は虫害被害を増加させる可能性があり、総合的な害虫管理の必要性が高まっている。

 

レンゲ米栽培の水田と無機一発肥料

/** Geminiが自動生成した概要 **/
レンゲ米栽培では土壌の生物相が変化し、有機一発肥料の肥効が前倒しになる可能性がある。しかし、レンゲ由来の有機物も影響するため、無機一発肥料の方が適している可能性もある。ただし、無機肥料でも水が必要で、中干しで土壌水分が減ると肥効が抑制される。レンゲ栽培では土壌有機物が増えるため、中干しの効果が低く、肥料切れのリスクが高まる。そのため、レンゲ米栽培で一発肥料を使う場合は、肥効の遅いタイプを選ぶか、オーダーメイド対応が必要となる。

 

ウキクサは稲作においてどのような影響を与えるのか?

/** Geminiが自動生成した概要 **/
ウキクサ繁茂は水田の鉄分濃度と関連があり、土壌中の鉄分が有機物でキレート化されていないとイネは吸収しにくい。キレート化とは鉄イオンなどの金属イオンを有機物で包み込み、植物が吸収しやすい形にすること。キレート鉄は土壌pHの影響を受けにくく、即効性があるため、葉面散布や土壌灌注で鉄欠乏を改善できる。特にアルカリ性土壌では鉄が不溶化しやすいため、キレート鉄が有効。ただし、キレート剤の種類によって効果が異なるため、適切な選択が必要。

 

レンゲ米栽培の水田と有機一発肥料

/** Geminiが自動生成した概要 **/
長野県JAグループのサイトによると、飯綱町のオオアカウキクサは水田雑草抑制に利用されている。しかし、その効用は水温低下によるもので、稲の生育初期には生育を阻害する可能性がある。一方、生育後期には雑草抑制効果を発揮し、除草剤使用量を減らす効果が期待できる。また、オオアカウキクサ自体も緑肥として利用可能で、持続可能な農業への貢献が注目されている。しかし、水温への影響を考慮し、使用方法や時期を適切に管理する必要がある。さらに、オオアカウキクサの繁殖力の強さから、周辺水域への拡散防止策も必要となる。

 

一発肥料の2つの型

/** Geminiが自動生成した概要 **/
一発肥料には、シグモイド型とリニア型の二つの肥効パターンがある。樹脂コートで肥効を調整する無機一発肥料はシグモイド型、土壌環境に肥効を依存する有機一発肥料はリニア型となる。前者は初期の肥効が緩やかで、その後急激に効き始め、最後は緩やかになる。後者は比較的安定した肥効が持続する。レンゲ米栽培では、土壌環境の違いから一発肥料の肥効も変化する可能性が高い。レンゲを使う場合は有機一発肥料が魅力的に見えるが、土壌環境の違いを考慮すると無機一発肥料の方が適している可能性がある。

 

稲作の中干しの意義を整理する

/** Geminiが自動生成した概要 **/
レンゲ米の田では中干し時に土壌のひび割れ(クラスト)が発生しにくい。一般的に中干しは、土壌中の酸素不足による根腐れを防ぎ、有害ガス(硫化水素、アンモニアなど)を排出して発根を促進するとされる。しかし、レンゲによる土壌改良は、これらの有害ガスの発生自体を抑制するため、ひび割れが少なくても悪影響は小さいと考えられる。中干しには根の損傷や新たな根のROLバリア質の低下といったデメリットもあるため、レンゲ米栽培では従来の意義が薄れ、元肥設計の見直しなど新たな栽培体系の確立が求められる。

 

イネの花芽分化の条件

/** Geminiが自動生成した概要 **/
イネの収量に関わる有効分げつと、そうでない高次分げつ(無効分げつ)の見極めは、中干し前後の時期だけでは不十分である。イネの花芽分化の条件を理解する必要がある。イネは短日植物で、日長が約10時間(暗い時間が14時間)になると花芽分化が始まる。ただし、花芽分化には一定期間の栄養生長期(基本栄養生長相)が必要となる。田植え時期が出穂時期に影響するため、地域ごとの栽培暦を参考にすると良い。無効分げつは、花芽分化の条件を満たす前に日長条件だけが満たされてしまった分げつも含むと考えられる。

 

イネの有効分げつ歩合とは

/** Geminiが自動生成した概要 **/
農研機構の「水稲の主要生育ステージとその特徴」は、水稲の生育段階を分かりやすく図解で解説しています。播種から出芽、苗の生育を経て、本田への移植後は分げつ期、幼穂形成期、減数分裂期、出穂・開花期、登熟期と進み、最終的に収穫に至ります。各ステージでは、葉齢、茎数、幼穂長などの指標を用いて生育状況を判断し、適切な栽培管理を行います。特に、分げつ期は収量に大きく影響し、幼穂形成期以降は高温や乾燥に注意が必要です。登熟期には、光合成産物を籾に蓄積することで米粒が充実していきます。これらのステージを理解することで、効率的な栽培と高品質な米の生産が可能となります。

 

イネの分げつについてを知ることが大事

/** Geminiが自動生成した概要 **/
イネの分げつ(脇芽)は収量に直結する重要な要素であり、植物ホルモンが関与する。根で合成されるストリゴラクトンは分げつを抑制する働きを持つ。ストリゴラクトンはβ-カロテンから酸化酵素によって生成される。酸化酵素が欠損したイネは分げつが過剰に発生する。レンゲ米は発根が優勢でストリゴラクトン合成量が多いため、分げつが少ないと考えられる。また、窒素同化系酵素も分げつ制御に関与しており、グルタミン合成酵素(GS1;1)が過剰発現したイネは分げつ数が減少する。これはGS1;1がサイトカイニン生合成の律速酵素を阻害するためである。つまり、窒素代謝と植物ホルモンは相互作用し、分げつ数を制御している。

 

水生植物であるイネの根腐れについて考える

/** Geminiが自動生成した概要 **/
イネの根腐れは、長雨による酸素不足ではなく、硫化水素の発生が原因である可能性が高い。硫化水素は、水田の嫌気環境下で、硫酸塩系肥料(硫安、キーゼライト、石膏、家畜糞堆肥など)が土壌微生物によって分解される際に発生する。生物は硫黄を再利用する進化を遂げているため、土壌に硫黄化合物が過剰に存在するのは不自然であり、肥料由来と考えられる。硫化水素は鉄と反応しやすく、イネの光合成や酸素運搬に必要な鉄の吸収を阻害する。水田は水漏れしにくいため、過去の肥料成分が蓄積しやすく、硫黄を抜く有効な手段がないため、田植え前の土壌管理が重要となる。ただし、長雨による日照不足や水位上昇も根への酸素供給を阻害する要因となりうる。

 

葉の色が濃いイネはいもち病に罹りやすい

/** Geminiが自動生成した概要 **/
葉色が濃いイネはいもち病に罹りやすいとされる。いもち病はカビが原因で、低温多湿で多発。菌は付着器でメラニンを蓄え、物理的にイネに侵入する。物理的侵入にもかかわらず、なぜ葉色が濃いと罹患しやすいのかという疑問に対し、葉の柔らかさやシリカ吸収の関連性を考察している。

 

レンゲ米の水田からイネの生長を考える

/** Geminiが自動生成した概要 **/
イネはケイ酸を吸収し、葉や茎に蓄積することで、病害虫や倒伏への抵抗力を高めます。ケイ酸は細胞壁を強化し、物理的なバリアを形成することで、病原菌の侵入や害虫の食害を防ぎます。また、茎を硬くすることで倒伏しにくくなり、穂数を増やし、収量向上に貢献します。さらに、ケイ酸は光合成を促進し、窒素の過剰吸収を抑える効果も持ち、健全な生育を促します。葉に蓄積されたケイ酸は、古くなった葉から若い葉へと転流しないため、古い葉ほどケイ酸濃度が高くなります。このため、ケイ酸はイネの生育にとって重要な要素であり、不足すると収量や品質に悪影響を及ぼします。

 

レンゲ米の水田に集まる昆虫たち

/** Geminiが自動生成した概要 **/
ラオスでは、魚粉の代替として安価な動物性タンパク質源の需要が高まっている。アメリカミズアブは繁殖力が強く、幼虫は栄養価が高いため、養魚餌料として有望視されている。しかし、雨季に採卵数が減少するという課題があった。本研究では、温度、湿度、日長を制御した室内飼育により、年間を通じて安定した採卵を実現する技術を開発した。適切な環境制御と成虫への給餌管理により、乾季の採卵数と同等レベルを維持できた。この技術は、ラオスにおける持続可能な養殖業の発展に貢献すると期待される。

 

花の色を決める4大色素

/** Geminiが自動生成した概要 **/
シロザの下葉が赤く変色していたことから、植物の色素について考察している。記事では、花の色素の基礎知識として、農研機構の情報を引用し、花の四大色素(カロテノイド、フラボノイド、ベタレイン、クロロフィル)について解説。カロテノイドは暖色系の色素で、フラボノイドは淡黄色から紫まで幅広い色を発現し、クロロフィルは緑色を呈する。これらの色素の配合比率によって花の色が決まる。また、花蜜や花粉に含まれる色素が蜂蜜の色や香りに影響を与え、機能性を高めていることにも触れ、色素の理解を深めることで、健康増進にも繋がる知見が得られると期待している。さらに、マメ科の植物を例に、フジの紫色、レンゲの赤紫、ミヤコグサの黄色、ジャケツイバラの黄色など、様々な花の色を紹介し、色素の多様性を示している。

 

緑肥栽培中に追肥を行う価値はあるか?

/** Geminiが自動生成した概要 **/
緑肥栽培、特にレンゲは、地力維持に重要だが、ミネラル流出やアルファルファタコゾウムシによる食害増加など課題も多い。緑肥効果を高めるには発根量増加が鍵で、地上部の成長も促進される。そこで、作物ほどではないにしろ、緑肥栽培中にアミノ酸系葉面散布剤を散布することで、栄養補給だけでなく、病害虫への抵抗性も高まり、次作の生育に有利に働く可能性がある。特にマメ科緑肥は害虫被害を受けやすいため有効と考えられる。イネ科緑肥の場合は、家畜糞堆肥のような根元への追肥も有効かもしれない。

 

開花させることが前提のレンゲを栽培する時に注意すべきこと

/** Geminiが自動生成した概要 **/
開花前提のレンゲ栽培は、開花で多くの養分が消費・持ち去られるため、事前の土作りが重要。レンゲは多花粉型蜜源で、ミツバチが花粉を大量に持ち去るため、特に亜鉛の喪失に注意。前作の米も花粉を生成し、一部はミツバチによって持ち去られるため、土壌への負担は大きい。水田へのミネラル供給は地域差があり、不明確。耕作放棄地でのレンゲ栽培は、放棄理由が収量低下の場合、蜂蜜の品質に期待できない。つまり、レンゲ栽培、特に開花させる場合は、土壌の養分、特に亜鉛を意識した土作りが必須となる。

 

レンゲ米の質を向上させることはできるか?

/** Geminiが自動生成した概要 **/
レンゲ米の質向上には、レンゲの生育環境改善が鍵となる。レンゲの旺盛な発根を促し、根圏微生物の活動を活発化させることで、土壌の団粒構造が形成され、難吸収性養分の吸収効率が高まる。具体的には、稲刈り後の水田の土壌を耕し、粘土質土壌をベントナイト等の粘土鉱物や粗めの有機物で改良することで、レンゲの根張りを良くする。さらに、レンゲ生育中に必要な金属成分を含む追肥を行うことで、フラボノイドの合成を促進し、根粒菌との共生関係を強化する。つまり、レンゲ栽培前の土壌改良と適切な追肥が、レンゲの生育を促進し、ひいては次作の稲の品質向上、ひいては美味しいレンゲ米に繋がる。緑肥の効果を高めるためには、次作で使用する土壌改良資材を前倒しで緑肥栽培時に使用することも有効である。

 

レンゲ米は美味しいのか?の続き

/** Geminiが自動生成した概要 **/
鉄は植物の生育に必須だが、アルミニウムは毒性を示す。土壌中の鉄は主に三価鉄(Fe3+)として存在し、植物はそれを二価鉄(Fe2+)に変換して吸収する。この変換には、根から分泌されるムシゲニンや、土壌中の微生物が関与する。ムシゲニンは鉄とキレート錯体を形成し、吸収を促進する。一方、アルミニウムもムシゲニンと錯体を形成するが、植物はアルミニウムを吸収せず、錯体のまま土壌中に放出することで無毒化する。レンゲなどの緑肥は土壌微生物を増やし、ムシゲニン分泌も促進するため、鉄吸収の向上とアルミニウム無毒化に貢献する。結果として、健全な植物生育が促される。

 

レンゲ米は美味しいのか?

/** Geminiが自動生成した概要 **/
レンゲ米は窒素固定による肥料効果以上に、土壌微生物叢や土壌物理性の向上、連作障害回避といった効果を通じて美味しさを向上させると推測される。レンゲ栽培は土壌への窒素供給量自体は少ないが、発根量が多いほど効果が高いため、生育環境の整備が重要となる。また、美味しい米作りには水に含まれるミネラルやシリカの吸収も重要であり、レンゲ栽培はこれらの吸収も促進すると考えられる。油かすや魚粉といった有機肥料も有効だが、高評価の米産地ではこれらを使用していない例もあり、美味しさの要因は複雑である。

 

高槻の清水地区のレンゲ米の水田の田起こし

/** Geminiが自動生成した概要 **/
高槻市清水地区のレンゲ米水田では、冬季にレンゲを栽培することで土壌改良が行われている。レンゲを鋤き込んだ後の水田は土が柔らかく、トラクターの跡が残らないほど軽い。これはレンゲにより土壌中の有機物が分解され、土の粒子同士の結合が弱まったためと考えられる。一方、レンゲを栽培していない隣の田んぼは土が固く、大きな塊が目立つ。レンゲ栽培は土壌の物理性を改善し、イネの根の生育を促進、肥料吸収の向上に繋がる。この水田ではベントナイトも使用されているため、レンゲ単独の効果の検証ではないが、レンゲ栽培は根圏微生物叢の向上、ひいては土壌への有機物馴染みの促進に貢献する。窒素固定も微生物叢向上に繋がる重要な要素である。

 

レンゲとアルファルファタコゾウムシ

/** Geminiが自動生成した概要 **/
マルチムギは、劣化した土壌の改善に効果的な緑肥です。土壌被覆による雑草抑制、線虫抑制効果、高い窒素固定能力を持ち、土壌微生物のエサとなる有機物を供給することで土壌構造を改善します。さらに、アレロパシー効果で雑草の発芽を抑え、土壌病害も抑制。線虫の増殖を抑制する働きも確認されています。他作物と比べて栽培管理の手間が少なく、痩せた土地でも生育可能なため、土壌改良に有効な選択肢となります。特に、連作障害対策や有機栽培への活用が期待されています。

 

老朽化水田は冬場の対応次第

/** Geminiが自動生成した概要 **/
老朽化水田の問題は、特定の肥料成分、特に硫酸石灰の残留と嫌気環境下でのガス化に起因する。硫酸イオンのガス化により土壌中の鉄が作物に吸収できない形に変換され、生育に悪影響を与える。大規模稲作では収穫後、水田に水を張ったまま放置することが多く、この嫌気状態がガス化を促進する。解決策として、収穫後に水を抜き、荒起こしを行い、土壌を酸素に触れさせることが重要。さらに、緑肥を栽培することで過剰な硫酸イオンを消費させ、土壌環境を改善できる。エンバクなどの耐寒性緑肥や、伝統的に利用されてきたレンゲも有効。これらの対策は、水田の持続的な利用に繋がる。


Powered by SOY CMS  ↑トップへ