/** Geminiが自動生成した概要 **/
猛暑日が続く中、稲作における中干しの意義を再検討する必要がある。高温は光合成の低下や活性酸素の増加につながり、葉の寿命に悪影響を与える。中干しは発根促進効果がある一方、高温時に葉温上昇を招く可能性もある。レンゲ栽培田では中干しによるひび割れがないにも関わらず、高温に耐えているように見える。ケイ酸質肥料は高温時の光合成を改善し、特に中干し後の幼穂形成期に吸収量が増加する。ケイ酸吸収が少ないと気孔の開きが悪くなり、葉温上昇につながる。また、珪藻等の微細藻類の殻は、植物が吸収しやすいシリカの形になりやすい可能性がある。
カテゴリー : 稲作/page-4
猛暑日が多い中で中干しの意義を再検討する
中干し後のレンゲ米栽培の田の様子
/** Geminiが自動生成した概要 **/
レンゲ米栽培田と慣行栽培田を比較観察した結果、中干し後、慣行栽培田では葉色が薄くなっているのが確認された。これは幼穂形成期における養分転流の影響と考えられる。養分転流は微量要素の移動にも関わり、根の活性が高いと新葉での転流利用率は低下する。サイトカイニンは葉の老化抑制に作用するため、発根が盛んなレンゲ米栽培田では葉色が濃いまま維持されている可能性がある。猛暑時期の光合成を盛んにするには、地温・外気温・紫外線対策といった水管理が重要となる。
開花させることが前提のレンゲを栽培する時に注意すべきこと再び
/** Geminiが自動生成した概要 **/
レンゲの開花を前提とした栽培では、ミツバチが花粉を持ち去ることで微量要素、特に亜鉛が持ち出される点に注意が必要です。現代の整備された用水路はミネラル供給源として期待薄で、レンゲ米栽培を続けると亜鉛欠乏を招く可能性があります。米ぬかにも亜鉛が含まれるため、精米や研ぎ汁によって更に亜鉛が失われます。レンゲの花粉の持ち出しと併せて、亜鉛の流出は米の品質低下に繋がる可能性があるため注意が必要です。これはレンゲ米に限らず、全ての稲作に当てはまります。綺麗な水で作られた米が美味しいと言われる一方で、ミネラル不足のリスクも考慮する必要があります。免疫向上に重要な亜鉛を維持するためにも、土壌への適切なミネラル供給が重要です。
イネの秀品率を高める為に不定根に着目する
/** Geminiが自動生成した概要 **/
イネの秀品率向上には不定根の発生が重要である。植物ホルモン、オーキシンとサイトカイニンの相互作用が根と脇芽の成長に影響する。オーキシンは根の成長を促進し、サイトカイニンは脇芽の成長を促進する。オーキシンは細胞増殖を調整することで、茎の光屈性や根の重力屈性といった器官形成にも関与する。細胞壁の緩みや核の位置の変化による局所的な細胞分裂の調整は、今後の課題として残されている。
稲作の虫害防除の今後を考える
/** Geminiが自動生成した概要 **/
稲作におけるカメムシ被害対策として、ネオニコチノイド系殺虫剤が使用されているが、人体やミツバチへの影響が懸念され、使用禁止の可能性が高まっている。代替手段として、レンゲ米の栽培が注目される。レンゲの鋤き込みは炭素固定量を増やし、冬季の雑草管理も軽減できる。一方、暖冬によるカメムシ越冬数の増加は、殺虫剤耐性を持つ害虫の出現など、深刻な農業被害をもたらす可能性がある。殺虫剤に頼らない栽培体系の確立が急務であり、レンゲ米はその有力な選択肢となる。さらに、殺菌剤の使用は虫害被害を増加させる可能性があり、総合的な害虫管理の必要性が高まっている。
レンゲ米栽培の水田と無機一発肥料
/** Geminiが自動生成した概要 **/
レンゲ米栽培では土壌の生物相が変化し、有機一発肥料の肥効が前倒しになる可能性がある。しかし、レンゲ由来の有機物も影響するため、無機一発肥料の方が適している可能性もある。ただし、無機肥料でも水が必要で、中干しで土壌水分が減ると肥効が抑制される。レンゲ栽培では土壌有機物が増えるため、中干しの効果が低く、肥料切れのリスクが高まる。そのため、レンゲ米栽培で一発肥料を使う場合は、肥効の遅いタイプを選ぶか、オーダーメイド対応が必要となる。
ウキクサは稲作においてどのような影響を与えるのか?
/** Geminiが自動生成した概要 **/
ウキクサ繁茂は水田の鉄分濃度と関連があり、土壌中の鉄分が有機物でキレート化されていないとイネは吸収しにくい。キレート化とは鉄イオンなどの金属イオンを有機物で包み込み、植物が吸収しやすい形にすること。キレート鉄は土壌pHの影響を受けにくく、即効性があるため、葉面散布や土壌灌注で鉄欠乏を改善できる。特にアルカリ性土壌では鉄が不溶化しやすいため、キレート鉄が有効。ただし、キレート剤の種類によって効果が異なるため、適切な選択が必要。
レンゲ米栽培の水田と有機一発肥料
/** Geminiが自動生成した概要 **/
長野県JAグループのサイトによると、飯綱町のオオアカウキクサは水田雑草抑制に利用されている。しかし、その効用は水温低下によるもので、稲の生育初期には生育を阻害する可能性がある。一方、生育後期には雑草抑制効果を発揮し、除草剤使用量を減らす効果が期待できる。また、オオアカウキクサ自体も緑肥として利用可能で、持続可能な農業への貢献が注目されている。しかし、水温への影響を考慮し、使用方法や時期を適切に管理する必要がある。さらに、オオアカウキクサの繁殖力の強さから、周辺水域への拡散防止策も必要となる。
一発肥料の2つの型
/** Geminiが自動生成した概要 **/
一発肥料には、シグモイド型とリニア型の二つの肥効パターンがある。樹脂コートで肥効を調整する無機一発肥料はシグモイド型、土壌環境に肥効を依存する有機一発肥料はリニア型となる。前者は初期の肥効が緩やかで、その後急激に効き始め、最後は緩やかになる。後者は比較的安定した肥効が持続する。レンゲ米栽培では、土壌環境の違いから一発肥料の肥効も変化する可能性が高い。レンゲを使う場合は有機一発肥料が魅力的に見えるが、土壌環境の違いを考慮すると無機一発肥料の方が適している可能性がある。
稲作の中干しの意義を整理する
/** Geminiが自動生成した概要 **/
レンゲ米栽培の水田では、葉色が薄く地上部の茂りが少ない一方で茎は太く、背丈が揃っている。慣行栽培と比べ、中干し時に土壌のひび割れが発生しにくい。これはレンゲによる土壌改良で有機物が増え、クラスト(乾燥ひび割れ)が生じにくいため。クラストは露地栽培では生育障害を起こすが、水田では発根促進のためのガス交換の場となる。レンゲ米ではひび割れがないことで有害物質の排出が懸念されるが、レンゲが事前に有害物質を軽減している。一方、中干しは根の損傷やROLバリアの質低下といったデメリットも持つ。レンゲ米で中干しの効果が薄まるなら、元肥設計を見直す必要がある。肥料偽装問題で硫安が使用された事例は、土壌への影響を考えると深刻な問題と言える。
イネの花芽分化の条件
/** Geminiが自動生成した概要 **/
イネの収量に関わる有効分げつと、そうでない高次分げつ(無効分げつ)の見極めは、中干し前後の時期だけでは不十分である。イネの花芽分化の条件を理解する必要がある。イネは短日植物で、日長が約10時間(暗い時間が14時間)になると花芽分化が始まる。ただし、花芽分化には一定期間の栄養生長期(基本栄養生長相)が必要となる。田植え時期が出穂時期に影響するため、地域ごとの栽培暦を参考にすると良い。無効分げつは、花芽分化の条件を満たす前に日長条件だけが満たされてしまった分げつも含むと考えられる。
イネの有効分げつ歩合とは
/** Geminiが自動生成した概要 **/
農研機構の「水稲の主要生育ステージとその特徴」は、水稲の生育段階を分かりやすく図解で解説しています。播種から出芽、苗の生育を経て、本田への移植後は分げつ期、幼穂形成期、減数分裂期、出穂・開花期、登熟期と進み、最終的に収穫に至ります。各ステージでは、葉齢、茎数、幼穂長などの指標を用いて生育状況を判断し、適切な栽培管理を行います。特に、分げつ期は収量に大きく影響し、幼穂形成期以降は高温や乾燥に注意が必要です。登熟期には、光合成産物を籾に蓄積することで米粒が充実していきます。これらのステージを理解することで、効率的な栽培と高品質な米の生産が可能となります。
イネの分げつについてを知ることが大事
/** Geminiが自動生成した概要 **/
イネの分げつ(脇芽)は収量に直結する重要な要素であり、植物ホルモンが関与する。根で合成されるストリゴラクトンは分げつを抑制する働きを持つ。ストリゴラクトンはβ-カロテンから酸化酵素によって生成される。酸化酵素が欠損したイネは分げつが過剰に発生する。レンゲ米は発根が優勢でストリゴラクトン合成量が多いため、分げつが少ないと考えられる。また、窒素同化系酵素も分げつ制御に関与しており、グルタミン合成酵素(GS1;1)が過剰発現したイネは分げつ数が減少する。これはGS1;1がサイトカイニン生合成の律速酵素を阻害するためである。つまり、窒素代謝と植物ホルモンは相互作用し、分げつ数を制御している。
水生植物であるイネの根腐れについて考える
/** Geminiが自動生成した概要 **/
イネの根腐れは、長雨による酸素不足ではなく、硫化水素の発生が原因である可能性が高い。硫化水素は、水田の嫌気環境下で、硫酸塩系肥料(硫安、キーゼライト、石膏、家畜糞堆肥など)が土壌微生物によって分解される際に発生する。生物は硫黄を再利用する進化を遂げているため、土壌に硫黄化合物が過剰に存在するのは不自然であり、肥料由来と考えられる。硫化水素は鉄と反応しやすく、イネの光合成や酸素運搬に必要な鉄の吸収を阻害する。水田は水漏れしにくいため、過去の肥料成分が蓄積しやすく、硫黄を抜く有効な手段がないため、田植え前の土壌管理が重要となる。ただし、長雨による日照不足や水位上昇も根への酸素供給を阻害する要因となりうる。
葉の色が濃いイネはいもち病に罹りやすい
/** Geminiが自動生成した概要 **/
イネはケイ酸を吸収し、葉の表皮細胞にケイ化細胞と呼ばれる硬い層を形成する。このケイ化細胞は物理的強度を高め、病原菌の侵入や害虫の食害を防ぐ役割を果たす。特にいもち病菌の侵入を抑制する効果が大きく、ケイ酸吸収を促進することで、いもち病抵抗性を高めることができる。また、ケイ化細胞は葉の垂直方向への成長を促進し、受光態勢を改善することで光合成効率を高める効果も期待される。さらに、蒸散量の抑制による耐乾性向上にも繋がる。土壌中のケイ酸供給量を増やす、もしくはイネのケイ酸吸収能力を高めることで、これらの効果を発揮し、イネの生育を向上させ、病害抵抗性を高めることができる。
レンゲ米の水田からイネの生長を考える
/** Geminiが自動生成した概要 **/
イネはケイ酸を吸収し、葉や茎に蓄積することで、病害虫や倒伏への抵抗力を高めます。ケイ酸は細胞壁を強化し、物理的なバリアを形成することで、病原菌の侵入や害虫の食害を防ぎます。また、茎を硬くすることで倒伏しにくくなり、穂数を増やし、収量向上に貢献します。さらに、ケイ酸は光合成を促進し、窒素の過剰吸収を抑える効果も持ち、健全な生育を促します。葉に蓄積されたケイ酸は、古くなった葉から若い葉へと転流しないため、古い葉ほどケイ酸濃度が高くなります。このため、ケイ酸はイネの生育にとって重要な要素であり、不足すると収量や品質に悪影響を及ぼします。
レンゲ米の水田に集まる昆虫たち
/** Geminiが自動生成した概要 **/
ラオスでは、魚粉の代替として安価な動物性タンパク質源の需要が高まっている。アメリカミズアブは繁殖力が強く、幼虫は栄養価が高いため、養魚餌料として有望視されている。しかし、雨季に採卵数が減少するという課題があった。本研究では、温度、湿度、日長を制御した室内飼育により、年間を通じて安定した採卵を実現する技術を開発した。適切な環境制御と成虫への給餌管理により、乾季の採卵数と同等レベルを維持できた。この技術は、ラオスにおける持続可能な養殖業の発展に貢献すると期待される。
花の色を決める4大色素
/** Geminiが自動生成した概要 **/
シロザの下葉が赤く変色していたことから、植物の色素について考察している。記事では、花の色素の基礎知識として、農研機構の情報を引用し、花の四大色素(カロテノイド、フラボノイド、ベタレイン、クロロフィル)について解説。カロテノイドは暖色系の色素で、フラボノイドは淡黄色から紫まで幅広い色を発現し、クロロフィルは緑色を呈する。これらの色素の配合比率によって花の色が決まる。また、花蜜や花粉に含まれる色素が蜂蜜の色や香りに影響を与え、機能性を高めていることにも触れ、色素の理解を深めることで、健康増進にも繋がる知見が得られると期待している。さらに、マメ科の植物を例に、フジの紫色、レンゲの赤紫、ミヤコグサの黄色、ジャケツイバラの黄色など、様々な花の色を紹介し、色素の多様性を示している。
緑肥栽培中に追肥を行う価値はあるか?
/** Geminiが自動生成した概要 **/
緑肥栽培、特にレンゲは、地力維持に重要だが、ミネラル流出やアルファルファタコゾウムシによる食害増加など課題も多い。緑肥効果を高めるには発根量増加が鍵で、地上部の成長も促進される。そこで、作物ほどではないにしろ、緑肥栽培中にアミノ酸系葉面散布剤を散布することで、栄養補給だけでなく、病害虫への抵抗性も高まり、次作の生育に有利に働く可能性がある。特にマメ科緑肥は害虫被害を受けやすいため有効と考えられる。イネ科緑肥の場合は、家畜糞堆肥のような根元への追肥も有効かもしれない。
開花させることが前提のレンゲを栽培する時に注意すべきこと
/** Geminiが自動生成した概要 **/
開花前提のレンゲ栽培は、開花で多くの養分が消費・持ち去られるため、事前の土作りが重要。レンゲは多花粉型蜜源で、ミツバチが花粉を大量に持ち去るため、特に亜鉛の喪失に注意。前作の米も花粉を生成し、一部はミツバチによって持ち去られるため、土壌への負担は大きい。水田へのミネラル供給は地域差があり、不明確。耕作放棄地でのレンゲ栽培は、放棄理由が収量低下の場合、蜂蜜の品質に期待できない。つまり、レンゲ栽培、特に開花させる場合は、土壌の養分、特に亜鉛を意識した土作りが必須となる。
レンゲ米の質を向上させることはできるか?
/** Geminiが自動生成した概要 **/
レンゲ米の質向上には、レンゲの生育環境改善が鍵となる。レンゲの旺盛な発根を促し、根圏微生物の活動を活発化させることで、土壌の団粒構造が形成され、難吸収性養分の吸収効率が高まる。具体的には、稲刈り後の水田の土壌を耕し、粘土質土壌をベントナイト等の粘土鉱物や粗めの有機物で改良することで、レンゲの根張りを良くする。さらに、レンゲ生育中に必要な金属成分を含む追肥を行うことで、フラボノイドの合成を促進し、根粒菌との共生関係を強化する。つまり、レンゲ栽培前の土壌改良と適切な追肥が、レンゲの生育を促進し、ひいては次作の稲の品質向上、ひいては美味しいレンゲ米に繋がる。緑肥の効果を高めるためには、次作で使用する土壌改良資材を前倒しで緑肥栽培時に使用することも有効である。
レンゲ米は美味しいのか?の続き
/** Geminiが自動生成した概要 **/
鉄は植物の生育に必須だが、アルミニウムは毒性を示す。土壌中の鉄は主に三価鉄(Fe3+)として存在し、植物はそれを二価鉄(Fe2+)に変換して吸収する。この変換には、根から分泌されるムシゲニンや、土壌中の微生物が関与する。ムシゲニンは鉄とキレート錯体を形成し、吸収を促進する。一方、アルミニウムもムシゲニンと錯体を形成するが、植物はアルミニウムを吸収せず、錯体のまま土壌中に放出することで無毒化する。レンゲなどの緑肥は土壌微生物を増やし、ムシゲニン分泌も促進するため、鉄吸収の向上とアルミニウム無毒化に貢献する。結果として、健全な植物生育が促される。
レンゲ米は美味しいのか?
/** Geminiが自動生成した概要 **/
レンゲ米は窒素固定による肥料効果以上に、土壌微生物叢や土壌物理性の向上、連作障害回避といった効果を通じて美味しさを向上させると推測される。レンゲ栽培は土壌への窒素供給量自体は少ないが、発根量が多いほど効果が高いため、生育環境の整備が重要となる。また、美味しい米作りには水に含まれるミネラルやシリカの吸収も重要であり、レンゲ栽培はこれらの吸収も促進すると考えられる。油かすや魚粉といった有機肥料も有効だが、高評価の米産地ではこれらを使用していない例もあり、美味しさの要因は複雑である。
高槻の清水地区のレンゲ米の水田の田起こし
/** Geminiが自動生成した概要 **/
高槻市清水地区のレンゲ米水田では、冬季にレンゲを栽培することで土壌改良が行われている。レンゲを鋤き込んだ後の水田は土が柔らかく、トラクターの跡が残らないほど軽い。これはレンゲにより土壌中の有機物が分解され、土の粒子同士の結合が弱まったためと考えられる。一方、レンゲを栽培していない隣の田んぼは土が固く、大きな塊が目立つ。レンゲ栽培は土壌の物理性を改善し、イネの根の生育を促進、肥料吸収の向上に繋がる。この水田ではベントナイトも使用されているため、レンゲ単独の効果の検証ではないが、レンゲ栽培は根圏微生物叢の向上、ひいては土壌への有機物馴染みの促進に貢献する。窒素固定も微生物叢向上に繋がる重要な要素である。
レンゲとアルファルファタコゾウムシ
/** Geminiが自動生成した概要 **/
マルチムギは、劣化した土壌の改善に効果的な緑肥です。土壌被覆による雑草抑制、線虫抑制効果、高い窒素固定能力を持ち、土壌微生物のエサとなる有機物を供給することで土壌構造を改善します。さらに、アレロパシー効果で雑草の発芽を抑え、土壌病害も抑制。線虫の増殖を抑制する働きも確認されています。他作物と比べて栽培管理の手間が少なく、痩せた土地でも生育可能なため、土壌改良に有効な選択肢となります。特に、連作障害対策や有機栽培への活用が期待されています。
老朽化水田は冬場の対応次第
/** Geminiが自動生成した概要 **/
老朽化水田の問題は、特定の肥料成分、特に硫酸石灰の残留と嫌気環境下でのガス化に起因する。硫酸イオンのガス化により土壌中の鉄が作物に吸収できない形に変換され、生育に悪影響を与える。大規模稲作では収穫後、水田に水を張ったまま放置することが多く、この嫌気状態がガス化を促進する。解決策として、収穫後に水を抜き、荒起こしを行い、土壌を酸素に触れさせることが重要。さらに、緑肥を栽培することで過剰な硫酸イオンを消費させ、土壌環境を改善できる。エンバクなどの耐寒性緑肥や、伝統的に利用されてきたレンゲも有効。これらの対策は、水田の持続的な利用に繋がる。