ブログ内検索

プログラミング教材開発
大阪府高槻市原地区で肥料教室を開いています

カテゴリー : 土壌環境/page-14

電子書籍の販売をはじめました
 

クローバの根圏で起こっていること

/** Geminiが自動生成した概要 **/
木質資材は土壌改良に有効だが、分解が遅く扱いが難しい。しかし、クローバーは木質資材上でも旺盛に生育し、その根圏には木質資材を分解する菌類が豊富に存在する。写真からも、クローバーの根に菌糸がびっしり付着し、根元にはキノコが生えている様子が確認できる。これはクローバーが菌類と共生関係にあり、菌類が木質資材を分解することで土壌改良を促進していることを示唆している。つまり、クローバーを植えることで、木質資材の分解が促進され、土壌の排水性と保水性が向上する。このメカニズムは、他の植物の生育にも好影響を与え、土壌環境の改善に繋がる。

 

環境はそこにいる草が教えてくれる

/** Geminiが自動生成した概要 **/
エノコロの生育で土壌の状態を判断していた師匠の話をきっかけに、植物の生育と環境の関係について考察している。植物は土壌の状態に合わせて発芽や成長を変化させ、エノコロも生育しやすい環境で群生する。シカに荒らされた畑にクローバを蒔いたところ、夏場にクローバが弱り、その後エノコロが生えてきた。クローバを春に育てておくことで、エノコロの生育しやすい環境を早期に作り出せる可能性があるという結論に至った。匍匐性で厄介なシロクローバではなく、アカクローバとシロクローバの交配種であるアルサイクローバが良いと補足している。

 

目の前に広がるエノコロたち

/** Geminiが自動生成した概要 **/
エノコロは畑の状態を判断する指標となる。どこにでも生えるほど丈夫で、荒れ地でも実をつけ、良い環境では大きく育つ。人の背丈ほどになれば、作物にも理想的な環境であることを示す。イネ科のエノコロはケイ酸を利用し、プラント・オパールとして土壌に腐植をもたらす。また、強い根は土壌を柔らかくし団粒構造を形成する。エノコロの背丈は根の深さと比例し、高いほど排水性と保水性が高い土壌を示す。師は、自然に生えるエノコロの状態から土壌の良し悪しを判断し、収穫を予測していた。緑肥ではなく、自然発生のエノコロこそが環境を正確に反映していると言える。写真の土壌はまだ発展途上で、エノコロも低い。

 

エノコロを見て思い出す師の言葉

/** Geminiが自動生成した概要 **/
イネ科緑肥の効果について、筆者は窒素固定以外のメリットに着目する。イネ科緑肥は土壌物理性を改善し、後作の生育を促進すると言われるが、そのメカニズムは未解明な部分が多い。筆者は、イネ科植物の旺盛な根の成長が土壌構造を改善し、排水性と通気性を向上させると推測する。また、根の分泌物や残渣が土壌微生物相に影響を与え、養分保持力を高める可能性も指摘する。さらに、イネ科緑肥は他の雑草の抑制効果も期待できる。これらの効果は土壌の種類や気候条件によって異なるため、緑肥の効果的な活用には土壌診断と適切な緑肥種の選択が重要となる。

 

アジサイの青ははじまりを示しているのか?

/** Geminiが自動生成した概要 **/
土壌の酸性化は、植物の生育に悪影響を与える。酸性土壌ではアルミニウムイオンが溶け出し、植物の根に障害を引き起こす。具体的には、根の伸長阻害や養分吸収の阻害が起こり、生育不良につながる。また、土壌pHの低下は、リン酸固定や微量要素欠乏も引き起こす。対策としては、石灰資材の施用によるpH調整が有効である。定期的な土壌診断を行い、適切なpH管理を行うことで、健全な植物生育が可能となる。さらに、酸性雨の影響も考慮し、土壌環境の保全に努める必要がある。

 

青い花が土壌の状態を示す

/** Geminiが自動生成した概要 **/
アジサイの青い花は、土壌のpHが低い(酸性)ことを示す。pHが低い土壌ではアルミニウムが溶け出すが、アジサイはこれを吸収し、アントシアニン色素と結合させることで青い花を咲かせる。このアルミニウムは、通常は有害だが、アジサイは有機物で囲い込むことで無害化していると考えられる。つまり、青いアジサイは土壌中の有害なアルミニウムを吸収し、無害な形で土壌に還元することで、次の植物にとって良い環境を作っている可能性がある。

 

可溶性ケイ酸にあるかもしれない底力

/** Geminiが自動生成した概要 **/
ケイ酸肥料はイネ科作物に良いだけでなく、土壌改良にも大きな可能性を秘めている。長石の風化過程でカリウムと共に生成されるケイ酸は、同時に発生する水酸化アルミニウムと反応し、カオリナイトという粘土鉱物を形成する。水酸化アルミニウムは土壌酸性化で溶脱し、植物の根に障害を与える有害物質である。つまり、ケイ酸を投入することで、この有害なアルミニウムを無害な粘土へと変化させ、土壌の保肥力・保水力を向上させることができる。スギナ繁茂地のようなアルミニウム障害の畑では、特にケイ酸投入による土壌改良効果が期待できる。

 

土壌のCECはどうやって測る?

/** Geminiが自動生成した概要 **/
土壌のCEC(陽イオン交換容量)測定は、土壌が保持できる養分の量を測る方法です。まず酢酸アンモニウムで土壌中の陽イオンをアンモニウムイオンに置換し、エタノールで洗浄後、塩化カリウムでアンモニウムイオンを溶出させます。この溶出したアンモニウムイオン量を測定することで、土壌のCEC、つまりマイナスの電荷量を間接的に測ることができます。測定単位はmeq(ミリイクイバレント)で、イオンの電荷数を示します。

 

土が劣化したなと感じた時に打てる手は?

/** Geminiが自動生成した概要 **/
京都農販の木村さんは、水持ちが悪く軽くなった元水田の劣化した土壌を、半年で団粒構造へと改善することに成功した。土壌劣化と肥料残留、有機物に関する知識を元に、風化した鉱物に合う資材を選定・投入した結果、教科書通りの団粒構造を実現し、水持ちも改善した。この成功は、劣化した土壌での栽培を続ける農家にとって大きな希望であり、肥料代の高騰対策にも繋がる可能性がある。重要なのは、牛糞を使った土壌改良をやめること。牛糞は土壌改良に適しておらず、別の適切な資材選択が重要となる。

 

根の影響力

/** Geminiが自動生成した概要 **/
不調の畑の土壌を観察したところ、粘土のように固く締まった部分が目立った。しかし、よく見ると、以前草の太い根があった場所は、周囲と比べて隙間が多く、柔らかな土壌になっていた。これは、根が土壌に酸素を供給し、土壌粒子間の結合を弱めることで、土壌を柔らかくする効果を示している。つまり、根の存在が土壌構造に大きな影響を与え、通気性や水はけを改善する役割を果たしていることを可視化できた。この観察は、「最初はとりあえず空気に当てとけって」と「自分たちの未来は自分たちで決める」という記事の内容にも関連しており、土壌改良には酸素供給と植物の根の働きが重要であることを示唆している。

 

土壌中のカルシウムの測定法

/** Geminiが自動生成した概要 **/
土壌中のカルシウム測定法は、酢酸アンモニウムで交換性石灰を抽出し、OCPC試薬で発色させ、吸光度を測定する。これは主に炭酸石灰やリン酸石灰由来のカルシウムを捉える。しかし、土壌劣化の原因となる硫酸カルシウムは難溶性のため、この方法では測定できない。農学的に「水溶性」とされるカルシウム塩も、化学的には難溶性であるため、土壌中の全カルシウム量を把握するには不十分。つまり、土壌分析の数値だけで判断せず、土壌の状態をよく観察することが重要である。石灰資材の過剰施用は土壌硬化や養分バランスの崩壊を招くため、注意が必要。

 

続・もう、牛糞で土作りなんて止めようよ

/** Geminiが自動生成した概要 **/
牛糞主体で鶏糞追肥の土壌分析アプリ結果が、以前塩害土壌で示したグラフと酷似した。リン酸値が高く、ECも高いこの状態は土壌肥料成分の活用を諦めた方が良い。トルオーグ法によるリン酸測定は有機態リン酸を検出せず、測定値は飼料由来のリンカル残骸を示唆する。カルシウム値も高い。牛糞主体土壌は測定値以上にリン酸過剰の可能性があり、土壌バランスの崩壊を示す。指導にある牛糞主体土作りは危険であり、過剰成分は他要素に影響する。施肥設計見直しで農薬防除回数削減も可能。

 

連作障害に立ち向かう、忌地編

/** Geminiが自動生成した概要 **/
連作障害の原因の一つに、作物自身が出すアレロパシー物質の蓄積がある。アレロパシーとは、植物が他の植物の生育を阻害する物質(アレロケミカル)を放出する作用のこと。例として、ヘアリーベッチはシアナミドを放出し雑草の生育を抑制するが、高濃度では自身の生育にも悪影響を与える。シアナミドは石灰窒素にも含まれる成分で、雑草やセンチュウへの抑制効果がある。コムギやソバなどもアレロパシー物質を出し、連作障害を引き起こす一因となる。

 

線虫捕食菌という存在を忘れてはならない

/** Geminiが自動生成した概要 **/
連作障害の一因であるセンチュウ増加は、線虫捕食菌で抑制できる。線虫捕食菌はセンチュウを捕食する微生物で、生物農薬のパスツーリア・ペネトランスや木材腐朽菌などが該当する。木材腐朽菌、特にキノコの菌糸は、木材中の炭水化物から炭素を、センチュウから窒素を得て生育する。つまり、菌糸が蔓延した木材資材を土壌に施用すれば、センチュウ抑制効果が期待できる。廃菌床も有効で、休眠中のキノコ菌がセンチュウを捕食する可能性がある。これらの資材と緑肥を併用すれば、土壌環境の改善と収量向上に繋がるだろう。

 

連作障害を制する時は相手のことを知れ

/** Geminiが自動生成した概要 **/
緑肥は、育てた植物を土にすき込むことで土壌改良を行う手法です。主な効果は、土壌への有機物供給による地力向上、土壌構造の改善、特定の緑肥作物による線虫抑制です。緑肥作物の種類によって効果が異なり、マメ科は窒素固定で土壌を豊かにし、イネ科は土壌病害抑制に効果があります。線虫抑制には、マリーゴールドが有名です。マリーゴールドの根から出る成分が線虫を抑制する効果があります。緑肥は、連作障害対策としても有効です。連作によって特定の養分が不足したり、線虫が増殖するのを防ぎ、地力の維持・向上に役立ちます。緑肥の種類や栽培期間を適切に選択することで、土壌改良効果を高めることができます。

 

連作障害に立ち向かう、線虫編

/** Geminiが自動生成した概要 **/
連作障害の一つとして、センチュウによる被害に着目した記事。センチュウは線形動物の一種で、植物寄生型は根に寄生し養分を吸収したり、根こぶ病や根腐れ病などの原因となる。連作すると、土壌中のセンチュウが増殖し、次の作付けで被害が拡大する。イラストで、連作畑ではセンチュウが多数存在し作物が弱る一方、連作していない畑ではセンチュウが少なく影響も軽微であることを示している。つまり、連作により特定の病害虫が増加することが障害の一因となるが、実際は無限に増え続けるわけではない。

 

連作障害に立ち向かう、養分編

/** Geminiが自動生成した概要 **/
連作障害は、同じ作物の連続栽培で土壌の肥料成分が偏り、病害虫が増加、作物自身の放出物質による生育阻害、塩類集積などが原因で収量が減少する現象。土壌診断で成分の過不足を把握し補う方法もあるが、土壌生態系は複雑で、診断だけで根本解決は難しい。診断は土壌劣化の要因特定のヒントにはなるが、土壌が健康であれば欠乏症は深刻化しない。ヤンマー南丹支店での講演では、土壌劣化と肥料残留の問題、カリウム欠乏の要因が土壌劣化にあることなどを解説した。連作障害回避には土壌の健康状態を重視する必要がある。

 

川は緑肥の使い方のヒントも教えてくれる

/** Geminiが自動生成した概要 **/
河川敷の石だらけの場所に育つ大きなアブラナを見て、緑肥の使い方について考察している。アブラナは窒素が少ない環境で土壌中の鉱物からミネラルを吸収する酸を放出する。河川敷は水が多く窒素が希薄なため、アブラナはそこで大きく育っていると考えられる。このことから、緑肥用アブラナは連作障害対策ではなく、真土を掘り起こしたり、土砂で劣化した畑の改善に役立つと推測。アブラナ科はホウ素要求量が多いため、土壌の鉱物の状態も重要。

 

もう、牛糞で土作りなんて止めようよ

/** Geminiが自動生成した概要 **/
牛糞堆肥による土作りは、塩類集積を引き起こし、作物の生育を阻害する可能性があるため、見直すべきである。例として、ミズナ栽培のハウス畑で塩類集積が確認された事例が挙げられている。土作りにおいては、肥料成分よりも腐植が重要である。牛糞堆肥にも腐植は含まれるが、純粋な腐植堆肥と比べて含有量が少なく、土壌に悪影響を与える成分が含まれるリスクがある。牛糞堆肥の使用は、資材費だけでなく人件費も増加させ、秀品率も低下させる非効率的な方法である。農業経営の悪化の一因にもなっており、窒素肥料の減肥率よりも、土壌の状態に目を向けるべきである。堆肥施用の真の価値は、秀品率の向上と農薬散布量の削減にある。

 

弾いていた水をいつの間にか受け取る様にした

/** Geminiが自動生成した概要 **/
植物は生きている時はワックスやカルシウムで水を弾くが、朽ちるとワックスが失われ、カルシウムも溶け出す。カルシウムがあった場所に水が入り込み、保水性を持つようになる。つまり、植物繊維は腐植となり、土の保水性を向上させる。落ち葉も同様で、腐敗するにつれ撥水性を失い、水分を保持するようになる。土作りでは、植物繊維を多く入れることで、物理的な保水性を得ることができる。

 

ジャガイモを割ったら中が染まってた

/** Geminiが自動生成した概要 **/
もらったジャガイモを切ったら、中心部が褐色に変色していた。これは「褐色心腐」という生理障害で、ジャガイモの肥大期に高温乾燥状態におかれると発生する。つまり、夏から秋にかけて雨が少なく灌水しない、または土壌の保水性が低い場合に起こりやすい。ジャガイモ栽培では堆肥をあまり使わないため、乾燥しやすい。しかし、土を草で覆うことで乾燥を防げる。過去にジャガイモ畝にヘアリーベッチを植えると秀品率が向上するという結果を見たが、今回の褐色心腐の発生抑制にも効果があるかもしれない。 (ただし、写真の症状が褐色心腐ではない可能性もある。)

 

湧き水を探す人

/** Geminiが自動生成した概要 **/
NHK「サラメシ」でサントリーの水質調査を見て、山の木の成長と湧き水の関係について考えた。山の木は肥料分が少ないのに大きく育つ。湧き水は花崗岩の上を流れミネラル豊富に見えた。森のポテンシャルは窒素より、鉱物の新鮮さと腐植が重要だと感じた。腐植もミネラルが元になり光合成で生成される。つまり、鉱物が腐植を生み、森の成長を支えていると推測した。

 

ECはどれくらいから警戒するべき?

/** Geminiが自動生成した概要 **/
EC値は水溶性肥料濃度の指標であり、高すぎると植物が吸水できず枯れる。JAは0.6~0.8S/mから警戒、1.0S/m以上で対策が必要としている。しかし、乾燥した石灰過剰の畑でEC値がほぼ0だった事例から、EC測定は水に溶けているイオンを測るため、乾燥土壌では正確な値を得にくいことがわかる。お茶のような液体は測定しやすいが、固形土壌は測定しにくい。測定対象を明確にしてデータ活用すべきであり、栽培は科学的なアプローチが重要。

 

お~いお茶のEC値は0.6S/mらしい

/** Geminiが自動生成した概要 **/
京都農販の人が土壌ECメーターで「お~いお茶」のEC値を測定したら0.6S/mだった。これは土壌の適正値0.2~0.4S/mより高く、肥料濃度の指標となるEC値の高さに驚いたというエピソード。EC値とは電気伝導率のことで、水中のイオン濃度が高いほど値も高くなる。土壌では残留肥料の指標となり、高すぎると石灰が溜まるなど問題が生じるため、管理が必要である。

 

吸収形態を見ていたら

/** Geminiが自動生成した概要 **/
JAの施肥ハンドブックで植物の必須要素の吸収形態を見ていたら、水素の吸収形態に疑問を持った。水素は水(H₂O)だけでなく、水素イオン(H⁺)や水酸化物イオン(OH⁻)でも吸収されることがあると記載されていた。酸性土壌を好む茶の木などは、土壌中の水素イオンを積極的に吸収しているのだろうか?もしそうなら、特定の植物を植えることで土壌のpHを中性に近づけることができるかもしれない、という考えが浮かんだ。

 

冬季の緑肥だとネキリムシが越冬するってよ

/** Geminiが自動生成した概要 **/
冬にエンバクなどの緑肥を育てると、ネキリムシが根元で越冬し、春の作付けで被害が増える可能性がある。冬耕しは越冬幼虫を減らす効果があるが、土壌への悪影響もある。ネキリムシ対策として、緑肥栽培のリスクと冬耕しのメリット・デメリットを比較検討し、被害を許容範囲に抑える作付け計画を立てる必要がある。具体的には、ネキリムシに抵抗性のある作物を選んだり、被害が出にくい時期に作付けするなどの工夫が求められる。

 

寒起こしで土を引き締める

/** Geminiが自動生成した概要 **/
冬期のトラクター耕作「寒起こし」は、土壌を乾燥させ害虫や菌の越冬を防ぐ効果がある。耕された土はふわふわになり表面積が増え、乾燥効果を高めている。これを踏まえ、保水性と間隙のある資材を投入すれば霜柱の発生を促進し、土壌改良効果を高められるのではないかと考察。霜柱による土壌の上昇・下降の繰り返しは更なる効果をもたらすと推測されるが、実際に行っている事例は少ないため、有効性や実施上の課題があると考えられる。

 

土を掘り起こしたら茶色い骨が出てきた

/** Geminiが自動生成した概要 **/
庭に埋められた魚の骨は、土壌改良に役立つのでしょうか? この記事では、魚の骨に含まれるリン酸カルシウムが植物の成長に不可欠なリンの供給源となる可能性を探っています。土壌に酸性雨が降ると、リン酸カルシウムは水溶性のリン酸に変化し、植物に吸収されやすくなります。しかし、土壌がアルカリ性の場合、リン酸カルシウムは不溶性のリン酸カルシウムのまま留まり、植物には利用できません。さらに、土壌中の微生物もリン酸の可溶化に重要な役割を果たします。彼らは有機物を分解する過程で酸を生成し、リン酸カルシウムの溶解を促進します。 つまり、魚の骨を土壌改良に用いる効果は土壌のpHや微生物の活動に大きく左右されるということです。

 

あそこの畑がカリ不足

/** Geminiが自動生成した概要 **/
カリウムは植物の生育に不可欠な要素で、特に光合成、糖の輸送、酵素活性、耐病性などに重要な役割を果たす。土壌中のカリウムは、植物が直接利用できる形態と、非交換態カリウムとして鉱物に含まれる形態が存在する。非交換態カリウムは風化によって徐々に交換態となり、植物が利用できるようになる。しかし、現代農業では集約的な栽培や化学肥料の使用により、土壌のカリウム供給力が低下している場合がある。そのため、カリウム欠乏が頻繁に観察される。土壌診断でカリウム欠乏が確認された場合、速効性のあるカリウム肥料で一時的に対処するだけでなく、長期的には土壌のカリウム供給力を高める対策、例えば鉱物を含む資材の投入などが重要となる。

 

鉱物が持つつなげる力

/** Geminiが自動生成した概要 **/
神奈川県新横浜付近の畑の土をマクロレンズで接写し、関東の細かい土壌の構造を観察した。京丹後の土と比較すると、粒子が細かく見える。接写の結果、微細な鉱物粒子が中くらいの粒子を繋ぎ止めていることが判明。予想に反し、もっさりとした繋がりではなく、小さな鉱物がより大きな鉱物を結合させている構造だった。この観察から、土壌鉱物の結合力について更なる探求が必要だと感じた。

 

霜柱が下から土を持ち上げる

/** Geminiが自動生成した概要 **/
実家の神奈川で、キラキラ光る霜柱を発見。マクロ撮影で観察すると、霜柱が土壌の鉱物を持ち上げている様子が捉えられた。霜柱ができる土壌は、間隙と保水性があり、良い土壌の条件を満たしている。論文によっては、霜柱が立つことで良い土壌になるとも言われている。霜柱が溶けると持ち上がった鉱物は落下し、土壌に隙間ができる。また、霜柱は複数の細い柱が合わさって形成されていることが観察された。

 

その木が生きた証は地中深くに残っていく

/** Geminiが自動生成した概要 **/
朽ちた木が森の土壌形成にどのように貢献するかを考察した記事です。著者は、朽木の写真を掲載し、その腐朽過程を観察しています。やがて地上から姿を消すであろう朽木は、生前には大きな木であり、地下には立派な根系が広がっていたと推測しています。そして、根が分解されると、多量のフェノール性化合物を含む腐植が地中深くに残ると指摘しています。特に、1メートル以上の深さに根を張っていた場合は、それ相応の深さに腐植層が形成される可能性を示唆しています。このように、朽木の根の分解は、森の土壌の厚みと肥沃さを増す重要な役割を果たしていると考え、「土とは死骸の塊」という関連記事へのリンクも掲載しています。

 

そもそも粘土って何?

/** Geminiが自動生成した概要 **/
粘土とは、鉱物が非常に細かく砕けたもので、粒子の大きさは0.002mm以下と肉眼では確認できない。この微細な粒子はコロイドとしての性質を持ち、分子間力で互いに引き付け合うため、水を含むと粘り気を帯び、塊状になりやすい。水田の土壌はこの粘土の特徴が顕著で、粒子同士が強く結びついている。そのため、水田土壌改良のためには、この繋がりを断ち切り、空気を含ませることで粘土らしい性質を壊す必要がある。

 

水田は川から重要なものを受け取る

/** Geminiが自動生成した概要 **/
川から水田に流れ込む水には、砂が風化してできた微細な粘土鉱物が含まれている。水田では水が滞留するため、これらの粘土鉱物が堆積する。粘土鉱物は土壌の隙間を埋め、水はけを悪くする。結果として、土壌中の酸素が不足し、鉄が還元されて土壌が黒っぽくなるグライ化現象が起こる。つまり、水田は川から粘土鉱物を受け取り、それがグライ化の要因となっている。

 

水田の土壌は細かい

/** Geminiが自動生成した概要 **/
水田の土壌が黒く、きめ細かい理由について考察している。山の岩石が風化してできた土壌が、水田の湛水状態によって鉄が還元され黒色化するのは理解できる。しかし、粘土質の増加については疑問が残る。人為的に粘土を投入したとは考えにくく、風化による生成も現実的ではない。では、なぜ水田の土は細かくなるのか?という問いを投げかけている。

 

足元の土より遠くの山

/** Geminiが自動生成した概要 **/
水の硬度は、含まれるカルシウムやマグネシウムなどのミネラル量で決まり、ミネラルが多い水を硬水、少ない水を軟水と呼ぶ。日本の水はほとんどが軟水で飲用可能だが、植物栽培にはミネラル豊富な硬水の方が有利な場合もある。水中のミネラルは、山にある鉱物が雨水で溶け出し、地下水を通じて川に流れ込むことで供給される。例えば、石灰岩が多い山の麓の川はカルシウム濃度が高く、周辺の畑ではカルシウム過剰にならないよう施肥量を調整する必要がある。つまり、地域の水の硬度は周辺の山の地質に影響される。

 

真砂土にある粘土は引っ張る力が弱い?

/** Geminiが自動生成した概要 **/
真砂土の主要粘土鉱物であるカオリナイトは、保肥力が低い。著者はマクロレンズ観察と鉱物図鑑、土壌ハンドブックからこの事実を突き止めた。真砂土の白い塊が簡単に崩れるのはカオリナイトの結合の弱さが原因と考えられ、保肥力の低さにも繋がっている。したがって、真砂土での栽培は難しく、保肥力を高めるためには、より保肥力のある粘土を施す必要があると結論付けている。

 

真砂土の茶色は何でできてる?

/** Geminiが自動生成した概要 **/
真砂土の茶色の原因を探るため、筆者は「楽しい鉱物図鑑」を参考に、角閃石に着目した。角閃石は種類によって色が様々だが、真砂土の色と類似していることから、その色のもとではないかと推測。角閃石の複雑な化学組成式には鉄が含まれており、風化しやすい性質も持っている。肥料農薬部 施肥診断技術者ハンドブックによれば、角閃石はCa、Mg、Feの給源とのこと。これらの情報から、真砂土の茶色は酸化鉄(Ⅲ)によるものではないかと考察し、鉄分を吸収するギシギシのような植物が生えた後の真砂土は、土壌改善に効果があるのではないかと推測している。

 

真砂土の白さが長石由来ならば

/** Geminiが自動生成した概要 **/
真砂土の白さは長石由来で、風化によってカリウムが溶脱し粘土鉱物に変化することで白さが失われる。長石はカリの供給源であるため、真砂土を長期間耕作するとカリが不足する可能性がある。風化した長石は指でつまむと崩れる白い鉱物だったと記憶している。しかし、真砂土には茶色い部分もあり、これは鉄の酸化によるものかもしれない。つまり、真砂土の色変化は長石の風化だけでなく、他の鉱物に含まれる鉄の酸化も関係していると考えられる。

 

記憶の中では真砂土は白かった

/** Geminiが自動生成した概要 **/
京丹後で栽培を学んだ著者は、師の畑の真砂土が白かった記憶を基に真砂土の成分を調べた。花崗岩が風化して真砂土になるが、花崗岩の主成分である石英と長石は白い。しかし、現在の真砂土は白くない。長石は風化すると粘土鉱物のカオリナイトになり、もろくなる。つまり、白い真砂土は長石が豊富に含まれていたが、現在の真砂土は長石が風化して失われた状態であると考えられる。土壌に酸素を入れるトラクター耕作が長石の風化を促進した可能性があり、白い真砂土は耕盤層付近に蓄積したカオリナイトだったのかもしれない。この考察は今後の栽培の問題解決に役立つ知見となる。

 

米ぬかボカシを作ろう!施肥後に得られるもの

/** Geminiが自動生成した概要 **/
米ぬかボカシの嫌気発酵は、窒素飢餓防止や有機質肥料の速効性向上に貢献します。微生物が増殖・死滅を繰り返す過程で、その細胞膜成分がNPK(窒素・リン酸・カリウム)以上の施肥効果を発揮します。発生する酸は炭酸塩で中和されるため、土壌劣化の心配はありません。費用対効果は低いものの、土壌微生物の働きを学ぶ教材としては優秀です。カニ殻を添加することで、さらなる微生物の活性化も期待できます。

 

ねばねばと聞いて連想するのは納豆

/** Geminiが自動生成した概要 **/
土壌の団粒化を促進するために納豆菌の活用が検討されている。納豆菌は土着菌である枯草菌の仲間であり、土壌中での増殖は問題ない。納豆の粘りはポリグルタミン酸によるもので、タンパク質が分解されてアミノ酸であるグルタミン酸が生成され、それが重合することで生じる。このことから、タンパク質含有量の高い資材と藁を真砂土に投入することで、納豆菌の働きによりポリグルタミン酸が生成され、土壌粒子の結合が強まり、団粒化が促進される可能性がある。

 

楽しい土壌の鉱物

/** Geminiが自動生成した概要 **/
OM-Dの底力とマクロレンズのおかげで、肉眼では見えない真砂土の鉱物まで鮮明に撮影できた。当初は雄蕊の花粉撮影を目的として購入したマクロレンズだったが、土壌撮影でも予想以上の成果を得た。鉱物図鑑を購入し、写真から土壌の組成を分析した結果、特定要素の欠乏症が多発する原因は、要素の不足ではなく植物の吸収阻害にあると判明。栽培開始時の資材選定で欠乏症対策が可能になるという新たな知見を得た。詳細な説明は後日改めて行う予定。

 

カニ殻が特定の菌のみが増殖することを制限する?

/** Geminiが自動生成した概要 **/
作物の病気は、特定の菌が著しく増殖することで発生します。この問題に対し、カニ殻を土に混ぜる土壌改良が有効です。カニ殻に含まれる「キチン」は、土壌中の多様なキチン分解菌の増殖を促します。これらの菌は、土壌内で優勢な菌(特に病原菌)を標的として優先的に分解・減少させるため、特定の病原菌だけが異常増殖する環境が抑制されます。カニ殻は、土壌の菌叢バランスを整え、病原菌が優位になる状況を防ぐことで、健全な土壌を育み、作物の病気発生を効果的に抑制するのです。

 

カニ殻を土に混ぜると作物が病気になりにくくなるんだって

/** Geminiが自動生成した概要 **/
カニ殻を土壌に混ぜると作物の病気が減る理由は、カニ殻に含まれるキチン質が関係している。キチンは微生物によって分解されるが、この過程でキチン分解酵素であるキチナーゼが生成される。キチンは菌類の細胞壁にも使われているため、土壌中のキチナーゼが増加すると、病原菌の細胞壁も分解され、菌の生育が抑制される。しかし、このメカニズムは有用な菌にも影響を与える可能性がある。カニ殻の投入は土壌微生物のバランスを変えるため、長期的な影響については更なる研究が必要である。

 

収穫後に現れるすごいやつ、シロザ

/** Geminiが自動生成した概要 **/
収穫後の畑に繁茂するシロザは、土壌改良に役立つ可能性がある。タデ科植物同様にシュウ酸を根から分泌し、土壌中のリンを可給化する役割が期待される。農業環境技術研究所の研究では、シロザはタデ科植物以上にシュウ酸分泌量が多いことが示されている。シロザは弱酸性土壌の指標植物であり、京都農販の好調な畑でも頻繁に観察される。これらのことから、シロザは酸性化しやすい収穫後の土壌環境を改善し、次作植物の生育を促進する役割を担っていると考えられる。

 

タデ科の草の活躍

/** Geminiが自動生成した概要 **/
畑の休耕期に生えるタデ科の雑草は、シュウ酸を含み土壌に良い影響を与える。土壌は耕作により酸化しやすく、植物のミネラル吸収を阻害するが、タデ科植物はシュウ酸による還元作用で鉄の酸化物を還元し、同時に水素イオンを減らすことでpHも調整する。つまり、酸化した土壌環境を改善し、植物がミネラルを吸収しやすい状態に戻す役割を担っていると考えられる。そのため、タデ科の雑草を排除するのではなく、土壌改良の役割を担う存在として活用する視点を持つことが重要である。

 

還元剤としてのシュウ酸?

/** Geminiが自動生成した概要 **/
タデ科植物の根から分泌されるシュウ酸の土壌還元作用について考察している。シュウ酸は酸化鉄(Ⅲ)と反応しシュウ酸鉄(Ⅲ)を生成する。この反応で鉄イオンは還元される。さらに、シュウ酸鉄(Ⅲ)は光分解によりシュウ酸鉄(Ⅱ)となり、鉄イオンはさらに還元される。つまり、シュウ酸は鉄イオンに電子を与え、還元剤として作用すると言える。この還元作用が土壌環境に影響を与えている可能性を示唆し、更なる考察の必要性を述べている。

 

廃菌床のポテンシャル

/** Geminiが自動生成した概要 **/
廃菌床堆肥は、キノコ栽培後の培地を再利用したもので、高い保水性、排水性、通気性を持つ一方、窒素飢餓、未分解成分による発酵熱、塩類集積、線虫発生のリスクも抱えています。窒素飢餓は、堆肥中の微生物が土壌の窒素を消費してしまう現象で、植物の生育を阻害します。これを防ぐには、堆肥投入前に十分な窒素肥料を施す必要があります。未分解成分の発酵熱は、特に初期生育に悪影響を与える可能性があります。完熟堆肥を選ぶ、少量ずつ施用する、土壌とよく混ぜるなどの対策が有効です。塩類集積は、培地由来の塩分が土壌に蓄積する現象で、これも生育阻害の原因となります。定期的な土壌分析と適切な灌水管理が必要です。線虫発生は、堆肥に混入した線虫が繁殖することで起こります。発生リスクを減らすため、信頼できる供給元から堆肥を調達し、必要に応じて燻蒸処理を行うことが重要です。

 

酸が金属を溶かす

/** Geminiが自動生成した概要 **/
酸は水素イオン(H+)を放出し、金属と反応する。金属の電子を奪う水素イオンは酸化剤として働き、電子を失った金属は酸化されてイオン化する。例えば、鉄と塩酸の反応では、鉄は電子を奪われ鉄イオン(Fe2+)になり、水素イオンは電子を受け取って水素ガス(H2)となる。鉄イオンは塩酸中の塩化物イオン(Cl-)と結合し、塩化鉄(FeCl2)を生成する。この反応は、硫化水素(H2S)と鉄の反応にも見られる。硫化水素も酸性を示し、鉄から電子を奪い硫化鉄を生成する。肥料のpHは土壌への影響を及ぼすため、NPKだけでなく酸性度にも注意が必要である。生理的酸性肥料や肥料成分偽装の問題も、土壌の酸性化に繋がる可能性があるため、理解しておくことが重要。


Powered by SOY CMS  ↑トップへ