
/** Geminiが自動生成した概要 **/
畔にアカメガシワの群生を発見。多くのアカメガシワの葉が黄色く、養分不足が伺える。周囲は背の低い草ばかりで、アカメガシワにとっては厳しい環境のようだ。それでも休眠せずに発芽するアカメガシワの生命力に感銘を受けた。

/** Geminiが自動生成した概要 **/
畔にアカメガシワの群生を発見。多くのアカメガシワの葉が黄色く、養分不足が伺える。周囲は背の低い草ばかりで、アカメガシワにとっては厳しい環境のようだ。それでも休眠せずに発芽するアカメガシワの生命力に感銘を受けた。

/** Geminiが自動生成した概要 **/
アカメガシワの種子が成熟した。重力散布では種子の拡散が考えられず、町中に自生しているのは不思議だ。
そこで、種子の休眠性の高さや、鳥による種子運搬が考えられる。アカメガシワの種子は鳥にとって無害であることが以前に判明している。
アカメガシワは、種子の拡散方法が明確でない不思議な植物である。

/** Geminiが自動生成した概要 **/
公園に続く砂利道に、マメ科らしき芽生えが多数見られます。これはネムノキでしょうか? 近くに親木は見当たりません。ネムノキは重力散布のため、遠くまで種が散布されることは考えにくいです。これらの芽生えは、土壌中の休眠種子から発芽した可能性があります。

/** Geminiが自動生成した概要 **/
この記事では、落葉に関連して葉の脱色とアブシジン酸の関係について考察しています。葉緑素は分解されマグネシウムが回収されますが、カロテノイドの行方が疑問として提示されています。
そこで、植物ホルモンであるアブシジン酸が登場します。アブシジン酸は休眠や成長抑制に関与し、葉の脱色にも関係しています。そして、アブシジン酸はカロテノイドの一種であるビオラキサンチンを前駆体として合成されます。
記事は、脱色中の葉でビオラキサンチンからアブシジン酸が合成される可能性を示唆し、更なる考察へと続きます。

/** Geminiが自動生成した概要 **/
ミカンの花芽形成は冬期のジベレリン処理で抑制されるが、その理由は花芽分化にある。花芽分化は冬期に起こり、枝に蓄積されたデンプン量に影響される。ジベレリンは栄養成長を促進しデンプン消費を促すため、結果的に花芽分化を抑制すると考えられる。一方、7~9月の乾燥ストレスはデンプン蓄積を促し花芽分化を増加させる。つまり、土壌の保水性改善による乾燥ストレスの軽減は、ジベレリン同様、花芽形成抑制につながる可能性がある。しかし、ミカンの栽培地では肥料運搬や土壌改良が難しいのが現状である。

/** Geminiが自動生成した概要 **/
ジベレリンは、植物ホルモンの一種で、種無しブドウの肥大、果実の着色促進、発芽促進などに利用されます。特にミカンの隔年結果対策として、冬期のジベレリン散布は有効です。これは、ジベレリンが花芽形成を抑制し、翌年の結実量を調整することで、隔年結果を防ぐ効果を狙っています。ただし、ジベレリンは植物の生理作用を調整する物質であるため、使用時期や濃度を誤ると、薬害が生じる可能性があります。そのため、適切な使用方法を理解することが重要です。

/** Geminiが自動生成した概要 **/
ウンシュウミカンの苦味軽減は、種無し性と関係があります。種子に多い苦味成分リモニンは、ウンシュウミカンが持つ高度な雄性・雌性不稔性と高い単為結果性により減少しました。つまり、受粉しなくても果実が大きくなる性質のため、種子ができずリモニンも少ないのです。これは、ジベレリンという植物ホルモンが関与している可能性があります。

/** Geminiが自動生成した概要 **/
シラカシの未熟な緑色のドングリが、殻が割れている状態で発見されました。通常、シラカシやアラカシのドングリは遅く熟すため、この現象は珍しいです。
割れた原因として、子葉の異常な膨張や休眠状態に入らなかった可能性が考えられます。これは、以前紹介したカボチャの果実内発芽と似ていますが、今回のドングリの場合は土壌中のカリの影響ではなく、偶発的なものと推測されます。

/** Geminiが自動生成した概要 **/
牧草と園芸 第69巻第4号(2021年)掲載の「種子休眠・発芽の生理とメカニズム」(川上直人)では、種子休眠について解説している。種子休眠とは、好適な環境条件下でも発芽しない状態を指し、植物が生き残るための重要な生存戦略である。休眠には、種皮による水・酸素の透過制限、発芽抑制物質の存在、胚の未熟などが関与する。休眠打破には、光、温度、時間経過といった環境要因が関与し、種ごとに異なる複雑なメカニズムが存在する。特に、光受容体であるフィトクロムによる赤色光・遠赤色光の感知は、種子の発芽タイミングを制御する上で重要な役割を担っている。

/** Geminiが自動生成した概要 **/
レンゲ米の田んぼに、ナズナが大量に種を落とした。ナズナの種は夏期の稲作時に大半が死滅すると言われているが、今年は中干し無しの稲作だったため、例年より多くのナズナが発芽した。中干し無しの環境がナズナの種の生存に影響を与えた可能性があり、酸素不足や温度変化の抑制が休眠打破を妨げた可能性が考えられる。もし稲作の中後期にナズナの種が死滅するなら、イネにリン酸や微量要素を供給してくれるので有益である。

/** Geminiが自動生成した概要 **/
このブログ記事では、これまで実物を見たことのなかったヤシャブシのタネを観察した記録が綴られています。木の周りで折れて落ちた実を発見し、分解してみると、固い殻の中に薄い膜に覆われた非常に小さなタネが確認されました。筆者は、ヤシャブシが実を長く枝に付けたまま風で揺らしてタネを散布する仕組みだと推測。さらに、折れて落ちた実が埋没種子として親株の根元に残り、撹乱刺激で休眠から覚める可能性を考察しています。小さいタネは発芽しやすいものの、初期の遮光が枯れる原因となることにも言及しています。

/** Geminiが自動生成した概要 **/
トマトの老化苗定植は微量要素欠乏のリスクを高める。老化苗は根の活性が低く、土壌からの微量要素吸収が不十分になりやすい。特に亜鉛欠乏は深刻で、葉の黄化や生育不良を引き起こす。さらに、亜鉛は植物ホルモンのオーキシン生成に関与し、不足すると花や果実の形成にも悪影響が出る。結果として、収量低下や品質劣化につながるため、老化苗定植時には微量要素、特に亜鉛の適切な補充が必須となる。葉面散布は即効性が高く効果的である。

/** Geminiが自動生成した概要 **/
倒木の下で大きなドングリが発芽しているのを発見。アベマキかクヌギか判別を試みる。アベマキは休眠性が低く、クヌギは休眠後、初春に発芽する。芽生えたばかりのように見えるためクヌギの可能性が高いが、根の伸長速度が不明なため断定できない。ブナ科の知識不足を痛感し、森林を学ぶ上での課題を認識した。

/** Geminiが自動生成した概要 **/
ブナシメジの廃菌床の活用法に着目した記事。ブナシメジは抗菌作用のある揮発性物質VAを生成し、特にキャベツの黒すす病菌に有効。廃菌床にもVAが含まれる可能性が高く、大量廃棄されている現状は資源の無駄。白色腐朽菌であるブナシメジの廃菌床はリグニン分解済みで、水田への施用によるレンゲ栽培や米の品質向上、ひいては二酸化炭素排出削減、農薬使用量削減にも貢献する可能性を提示。休眠胞子が大半を占める廃菌床は、作物への悪影響がない限り積極的に活用すべきと結論づけている。

/** Geminiが自動生成した概要 **/
ドングリは種子ではなく、薄い果皮に包まれた堅果である。乾燥に弱いドングリは、発芽時期を調整する休眠性を持つ。アベマキは休眠性が弱く秋に発根し冬を越すが、クヌギは休眠性が強く春に発芽する。クヌギの休眠解除には約120日の低温処理が必要となる。これらの情報から、秋に発根しているドングリはアベマキと推測できる。ただし、春に芽生えているドングリの種類の特定は、発芽後の成長速度が不明なため難しい。

/** Geminiが自動生成した概要 **/
高槻の水田でジャンボタニシ(スクミリンゴガイ)を発見。その駆除法として、天敵、トラップ、農薬の他、フルボ酸でイネを強化し食害を防ぐ方法や、水管理を徹底しジャンボタニシに除草をさせる方法が挙げられている。中でも注目されている農薬はリン酸第二鉄で、タニシに摂食障害を引き起こし、稲の肥料にもなるため初期生育に有効。つまり、土作りを徹底し、初期生育にリン酸第二鉄を与え、水管理を徹底することが重要。温暖化の影響で越冬生存率が増加しているため、対策の必要性が高まっている。

/** Geminiが自動生成した概要 **/
イネは品種改良を通してサイトカイニン含量が増加し、収量向上に繋がった。サイトカイニンは分げつ伸長や養分転流に関与する重要な植物ホルモンだが、根の伸長は抑制する。高校生物で学ぶ「サイトカイニンは根で合成」は少し不正確で、実際は地上部で合成されたiP型サイトカイニンが根に運ばれ、tZ型に変換されて地上部へ送られ作用する。根の栄養塩が豊富だとtZ型への変換が促進され、サイトカイニン活性が高まる。

/** Geminiが自動生成した概要 **/
甲虫の越冬戦略は、土壌中で休眠すること。土壌の温度と湿度は比較的安定しており、捕食者からも隠れられるためだ。休眠中は代謝が低下し、エネルギー消費を抑える。土壌の深さは種類によって異なり、コガネムシは深い場所を好み、ゴミムシは浅い場所を好む傾向がある。冬季の土壌凍結は甲虫にとって致命的となる場合があり、凍結深度が種の分布に影響を与える。また、休眠中の甲虫は土壌微生物の活動にも影響を与え、分解プロセスに関与している可能性がある。さらに、土壌中の甲虫は鳥類や哺乳類などの餌資源となり、生態系において重要な役割を担っている。

/** Geminiが自動生成した概要 **/
草生栽培は、害虫防除に有効な可能性を秘めている。高齢農家は雑草を増やすと害虫も増えると考えるが、抵抗性誘導で害虫を防除できる。草が傷つくとジャスモン酸が合成され、ジャスモン酸メチルとして周辺に伝播し、作物の抵抗性を向上させる。スパイダーモアなどで通路の草を刈り、損傷させることで抵抗性誘導を促せる。刈る草も健康的に育てるため、肥料を与えて発根を促進するのが良い。ネギの畝間にマルチムギを生やすとアザミウマの被害が減った事例もあり、草を生やすこと自体が良い刺激になる可能性がある。ただし、草生栽培を行う前に、土壌を良い状態にしておくことが重要である。
/** Geminiが自動生成した概要 **/
チョウ目昆虫の幼虫は、冬季などの生存に不利な時期を乗り越えるため、休眠する。休眠は「自発的な発育停止」と定義され、体内の脱皮ホルモン濃度の低下に伴い開始される。幼虫期には幼若ホルモンと脱皮ホルモンが存在し、両者のバランスで脱皮と蛹化が制御される。休眠中の幼虫は非休眠時と比べ幼若ホルモン濃度が高く、これが脱皮ホルモンの合成を抑制することで成長を停止させると考えられている。

/** Geminiが自動生成した概要 **/
有機リン系殺虫剤は、リンを中心構造に持ち、P=S型(チオノ体)とP=O型が存在する。チオノ体は昆虫体内でP=O型(オクソン体)に代謝され、神経伝達物質アセチルコリンを分解する酵素アセチルコリンエステラーゼ(AChE)に作用する。オクソン体はAChEの活性部位に結合し、酵素の形状変化を引き起こすことで基質との結合を阻害、AChEを不活性化する。AChEは神経の興奮を鎮める役割を持つため、不活性化により昆虫は興奮状態を持続し、衰弱死に至る。AChEは他の動物にも存在するため、有機リン系殺虫剤は非選択的な作用を示す。

/** Geminiが自動生成した概要 **/
コガタルリハムシは成虫で10ヶ月もの長期休眠を行う。休眠中は休眠特異的ペプチドDiapausinを発現させるが、その機能は謎が多い。Diapausinは昆虫病原菌には効果がないのに、植物病原菌の生育を抑制する。さらに、Diapausinの発現量を減らしても休眠に影響がないことから、休眠維持のためではなく、土壌微生物との相互作用に関与している可能性が示唆されている。休眠中のエネルギー消費を考えると、Diapausin合成には何らかの重要な役割があると推測され、更なる研究が期待される。

/** Geminiが自動生成した概要 **/
長野県栄村の山を切り崩した場所に、シダ植物が繁茂している様子が観察された。夏前は草もまばらだった場所だが、切り崩し前はシダが生えていた。シダは日陰のイメージがあるが、ここは光を多く受ける場所だ。種子でなく胞子で繁殖するため、休眠していたとは考えにくい。周辺のシダが素早く進出したのだろう。シダは日当たりの良い場所でも生育できることが分かり、霧の多さが生育に適した環境を提供している可能性も考えられる。

/** Geminiが自動生成した概要 **/
カリウムは土壌に豊富とされるが、劣化した土壌では不足しやすく、野菜の生育不良や味に影響する。カボチャの果実内発芽はカリウム不足の一例で、味が落ちる。研究によると、塩化カリウムは塩味を増強する効果があり、野菜のカリウム含有量と美味しさの関連性が示唆される。美味しい野菜は、土壌劣化のない畑で育ち、カリウムが豊富に含まれている。人体ではカリウムが塩分排出を促すため、美味しい野菜は健康にも良いと言える。つまり、「野菜の美味しさ=健康」という仮説が有力となる。土壌管理の重要性も強調されている。

/** Geminiが自動生成した概要 **/
ヘアリーベッチは、窒素固定に加え、アレロパシー作用で雑草を抑制する緑肥です。根から分泌されるシアナミドが雑草種子の休眠を打破し、時期外れの発芽を促して枯死させる効果があります。シアナミドは石灰窒素の成分であり、土壌消毒にも利用されます。裏作でヘアリーベッチを栽培すれば、土壌消毒と土壌改良を同時に行え、後作の秀品率向上に繋がると考えられます。さらに、ヘアリーベッチは木質資材の分解促進効果も期待できるため、播種前に安価な木質資材をすき込むことで、土壌改良効果とシアナミド分泌量の増加が期待できます。この手法は従来の太陽光と石灰窒素による土壌消毒より効果的かもしれません。今後の課題は、シアナミドの作用点と、効果のない土壌微生物の特定です。

/** Geminiが自動生成した概要 **/
二価鉄は、生物にとって重要な役割を果たす一方で、扱いにくい性質も持っています。ヘモグロビンによる酸素運搬、酵素による代謝反応など、生命維持に不可欠な多くのプロセスに関与しています。しかし、二価鉄は容易に酸化されて三価鉄になり、活性酸素を発生させるため、細胞に損傷を与える可能性があります。そのため、生物はフェリチンなどのタンパク質を用いて鉄を貯蔵・管理し、過剰な鉄による酸化ストレスから身を守っています。また、植物は二価鉄を吸収しやすくするために、土壌を酸性化したり、キレート剤を分泌したりするなど、工夫を凝らしています。このように二価鉄は、その利用と制御のバランスが生物にとって重要です。

/** Geminiが自動生成した概要 **/
土壌再生において、藍藻類の役割に着目した記事を要約します。藍藻類、特にネンジュモは、塩類集積地などの荒廃土壌において、粘液物質(多糖類)を分泌することで土壌の物理性を向上させる効果があります。土壌藻である藍藻類は土壌粒子を包み込み、団粒構造を形成します。この団粒構造は、塩類集積地のような劣悪な環境でも形成され、植物の生育に適した環境を創造するのに貢献します。これは、従来の牛糞を用いた土壌改良とは異なるアプローチであり、荒廃土壌の再生に新たな可能性を示唆しています。

/** Geminiが自動生成した概要 **/
コケ観察にはルーペと霧吹きが必須。乾燥したコケは縮れて見分けにくいですが、霧吹きで湿らせると葉が開き、真の姿を観察できます。記事では、乾燥したコケと水を得たコケを写真で比較し、水分によって劇的に変化する様子を紹介。水分の少ない環境では、コケは葉を縮めて乾燥に耐え休眠しますが、水分を得ると葉を広げ、鮮やかな緑色になります。また、コケに覆われた場所で双葉を見つけ、コケが他の植物の生育を助ける役割も担っていると考察しています。コケ図鑑を引用し、観察のポイントを解説しています。

/** Geminiが自動生成した概要 **/
記事中に「山の鉄が川を経て海へ」の記事の内容は記載されていません。そのため要約を作成することができません。
提供されたテキストは、台風による落葉が原因で桜が季節外れに開花した現象について解説しています。通常、桜は冬前に花芽を形成し、休眠させて冬を越しますが、台風で葉が落ちてしまうと休眠ホルモンであるアブシジン酸がうまく形成されず、休眠に入らず開花してしまうとのことです。これは果実内発芽と似た現象であり、植物の生殖機能に異常が生じていることを示唆し、将来的な問題への懸念を示しています。

/** Geminiが自動生成した概要 **/
「豪雨ニモマケズ、暴風ニモマケズ」と題されたこの記事は、2週間前の豪雨で増水した川が平常水位に戻った様子をレポート。一度浸水し、流れに沿って倒れた川辺の草が、上部は緑を保ち、根元からは新しい脇芽を出しているたくましい姿を映し出す。この生命力に「強いな」と感嘆し、筆者は、人間の文明が気候を変える中でも、植物はうまく適応したり、時には休眠したりして、したたかに生き抜いていくのだろうという考察を深めている。

/** Geminiが自動生成した概要 **/
土壌改良の指標として、特定の雑草の植生変化が有効である。酸性土壌を好むヤブガラシが減少し、微酸性〜中性の土壌を好むシロザ、ホトケノザ、ナズナ、ハコベが増加した場合、土壌pHが改善され、理想的なpH6.5に近づいている可能性が高い。これは、土壌シードバンクの考え方からも裏付けられる。 土壌pHの安定化は、炭酸塩施肥や植物性堆肥の蓄積によって実現するが、特に後者は土壌改良の他の要素向上にも繋がるため、植生変化は精度の高い指標となる。加えて、シロザは次世代の緑肥としても有望視されている。

/** Geminiが自動生成した概要 **/
果実の熟成における活性酸素の役割は、着色と種子の休眠という二つの側面を持つ。アントシアニン色素の蓄積は、光合成過程で発生する過剰な活性酸素を抑制する反応として起こる。一方、果実内の種子の休眠には、適切な量の活性酸素が必要となる。活性酸素の不足は、果実内発芽を引き起こす。メロンの場合、硝酸態窒素過多やカリウム不足が活性酸素の発生量を低下させ、果実内発芽につながる。イチゴも同様のメカニズムを持つと仮定すると、高品質な果実生産には、生育段階に応じた適切な施肥管理と、熟成期の環境制御が重要となる。

/** Geminiが自動生成した概要 **/
知人の菜園で収穫前のトウモロコシ(ポップコーン)に「穂発芽」が見られました。これは米の穂発芽と同様に、種子の休眠性が低い品種で多雨により発生するとされます。しかし、今回はごく一部での発生だったため、筆者は種子の「休眠失敗」や、土壌の劣化(特に鉄・カリウムの欠乏)が原因である可能性を指摘。知人にはカボチャの果実内発芽の事例を挙げ、土壌の鉱物消耗を伝えました。連作している畑では、欠乏の有無にかかわらず、鉄やカリウムの補給を意識することが重要だと提言しています。

/** Geminiが自動生成した概要 **/
井手ケ浜の崩落箇所で露頭した地肌の下方にハマエンドウが咲いていた。腐植のない地肌で根粒菌もいないため、ハマエンドウの発芽には疑問が残る。しかし、著者は上から流れ落ちた土に含まれていたマメが発芽した可能性を推測した。

/** Geminiが自動生成した概要 **/
岩場の小川で、滝つぼのように水が流れ落ち土が削られた場所に、タネツケバナが開花している。種子は、水流で運ばれたのか、元々川底に埋まっていたのか。水没した低酸素環境でも種子は休眠できるのか。このような厳しい環境で発芽・開花できた要因は何か。

/** Geminiが自動生成した概要 **/
果実内発芽した種子は、アブシジン酸不足により休眠できず、種皮が白く膨らんでいる。通常、種子は休眠時にアブシジン酸が活性酸素を生成し、気孔を閉じさせる。活性酸素は種皮も酸化し、茶色に変色させるようだ。果実内発芽の種子は、この酸化過程を経ず白いまま発芽を始める。つまり、種皮の色は休眠とアブシジン酸の影響を示す指標と言える。

/** Geminiが自動生成した概要 **/
果実内発芽は、種子が休眠できずに発芽する現象で、アブシジン酸(ABA)の不足が原因である。ABAは、水ストレス時の気孔閉鎖、種子休眠誘導、器官離脱に関与する植物ホルモン。玄米に多く含まれるABAは、活性酸素生成を促すため毒性があると噂される。ストレスを感じた植物はABAを合成し、ABAが活性酸素生成の鍵となる。活性酸素は通常、ミトコンドリアで生成されるが、ABA蓄積により過剰生成される可能性が懸念され、玄米食の危険性が議論されている。

/** Geminiが自動生成した概要 **/
カボチャの果実内発芽は、土壌の深刻な風化を示唆する指標となる。果実内発芽は、種子の休眠を誘導するアブシジン酸の不足によって引き起こされ、その原因として土壌中の硝酸態窒素過多またはカリウム不足が挙げられる。硝酸態窒素は施肥で調整可能だが、カリウムは土壌の一次鉱物の風化によって供給されるため、連作により枯渇しやすい。果実内発芽が発生した場合、土壌の風化が進みカリウム供給源が不足している可能性が高いため、単純な作物変更や休耕では改善が難しい。土壌の根本的な改善策として、一次鉱物を含む資材の投入や、カリウムを保持する腐植を増やす緑肥の導入などが有効と考えられる。

/** Geminiが自動生成した概要 **/
エノコロの生育で土壌の状態を判断していた師匠の話をきっかけに、植物の生育と環境の関係について考察している。植物は土壌の状態に合わせて発芽や成長を変化させ、エノコロも生育しやすい環境で群生する。シカに荒らされた畑にクローバを蒔いたところ、夏場にクローバが弱り、その後エノコロが生えてきた。クローバを春に育てておくことで、エノコロの生育しやすい環境を早期に作り出せる可能性があるという結論に至った。匍匐性で厄介なシロクローバではなく、アカクローバとシロクローバの交配種であるアルサイクローバが良いと補足している。

/** Geminiが自動生成した概要 **/
道端で目立つヒルガオは、つる性で他の植物に巻き付きながら咲くため、生育に有利に見える。しかし、一面に生い茂ることはなく、点在している。アサガオ同様、種は一花に4個ほどで、一株で多くの花を咲かせるため種子の数は少なくない。にもかかわらず繁茂しないのはなぜか。種同士で牽制しあい、重力で周囲に落ちた種の一部だけが発芽し、残りは休眠しているのだろうか。ヒルガオは休眠性が強いのか。有利なはずなのに繁茂しない理由は不思議だ。

/** Geminiが自動生成した概要 **/
北野天満宮は、学問の神様・菅原道真公を祀る神社で、梅との縁が深い。道真公が太宰府へ左遷される際、愛した梅の木が後を追って飛来したという「飛梅伝説」が有名。境内には、道真公を偲び各地から献上された約1500本もの梅が植えられており、早咲きから遅咲きまで、紅白様々な梅の花が2月上旬から3月下旬まで順次開花する。毎年2月25日には梅花祭が行われ、野点や琴の演奏など、華やかな催し物で春の訪れを祝う。紅梅と白梅が咲き乱れる境内は、訪れる人々に美しさと安らぎを与えている。

/** Geminiが自動生成した概要 **/
連作障害の一因であるセンチュウ増加は、線虫捕食菌で抑制できる。線虫捕食菌はセンチュウを捕食する微生物で、生物農薬のパスツーリア・ペネトランスや木材腐朽菌などが該当する。木材腐朽菌、特にキノコの菌糸は、木材中の炭水化物から炭素を、センチュウから窒素を得て生育する。つまり、菌糸が蔓延した木材資材を土壌に施用すれば、センチュウ抑制効果が期待できる。廃菌床も有効で、休眠中のキノコ菌がセンチュウを捕食する可能性がある。これらの資材と緑肥を併用すれば、土壌環境の改善と収量向上に繋がるだろう。

/** Geminiが自動生成した概要 **/
緑肥は、育てた植物を土にすき込むことで土壌改良を行う手法です。主な効果は、土壌への有機物供給による地力向上、土壌構造の改善、特定の緑肥作物による線虫抑制です。
緑肥作物の種類によって効果が異なり、マメ科は窒素固定で土壌を豊かにし、イネ科は土壌病害抑制に効果があります。線虫抑制には、マリーゴールドが有名です。マリーゴールドの根から出る成分が線虫を抑制する効果があります。
緑肥は、連作障害対策としても有効です。連作によって特定の養分が不足したり、線虫が増殖するのを防ぎ、地力の維持・向上に役立ちます。緑肥の種類や栽培期間を適切に選択することで、土壌改良効果を高めることができます。