/** Geminiが自動生成した概要 **/
キノコ栽培後の廃培地は、栄養豊富にも関わらず、多くの場合焼却処分されている。これは、線虫や雑菌の温床となりやすく、再利用による病害リスクが高いためである。特に、連作障害が深刻なキノコ栽培では、清潔な培地が必須となる。また、廃培地の堆肥化は、キノコ菌の増殖が抑制されず、他の有用微生物の活動が阻害されるため困難である。さらに、廃培地の運搬コストや堆肥化施設の不足も焼却処分を選択する要因となっている。結果として、資源の有効活用という観点からは課題が残るものの、現状では病害リスク軽減を優先した焼却処分が主流となっている。
カテゴリー : 堆肥・肥料/page-7
酵母エキス入り肥料の効果
キノコの廃培地は再利用せずに焼却している

/** Geminiが自動生成した概要 **/
キノコ栽培後の廃培地は、リグニン分解が進み土壌有機物蓄積に重要なフェニルプロパノイドを含む貴重な資源だが、現状は産業廃棄物として焼却処分されている。これは、植物が固定した二酸化炭素を放出するだけでなく、土壌改良材としての活用機会も失う二重の損失となる。キノコ栽培の活性化と廃培地の有効活用は、地方創生に貢献し、大気中の温室効果ガス削減にも繋がる可能性を秘めている。ただし、廃培地を堆肥として利用するには、作物との窒素競合を防ぐため適切な処理が必要となる。
火山灰に含まれる粘土鉱物たち

/** Geminiが自動生成した概要 **/
粘土鉱物肥料に含まれる黒っぽい砂の正体について考察している。火山灰由来の粘土鉱物肥料に着目し、火山灰に含まれる黒っぽい鉱物として角閃石と輝石を候補に挙げ、特に角閃石について詳しく分析。角閃石は風化によってバーミキュライト、さらにカオリナイトへと変成する。バーミキュライトは保肥力が高い粘土鉱物である一方、カオリナイトは保肥力が低い。角閃石の中心部はバーミキュライト、表面はカオリナイトに変成するという研究結果から、風化の進行度合いによる変化が示唆される。角閃石肥料が植物によって利用され、変成した鉱物に腐植が取り込まれると良質な土壌が形成される可能性があるが、実現可能性は不明。また、黒い砂が本当に角閃石であるかは断定していないものの、有色鉱物であればミネラル供給源となるため、肥料としての価値は高いと推測している。
農文協の現代農業9月号の廃菌床の特集で紹介していただきました

/** Geminiが自動生成した概要 **/
明日発売の現代農業9月号(農文協)で、京都農販が紹介されます。内容は廃菌床堆肥の効果に関するレポートで、土壌変化のデータや、私が作成した根拠資料が掲載されています。栽培のヒントになると思いますので、書店で見かけたらぜひご覧ください。特にキノコ好きの方にはオススメの内容です。記事で紹介されている廃菌床堆肥「マッシュORG」は京都農販で販売しています。反響次第で更に詳しい情報も掲載されるかもしれませんので、出版社に感想を送っていただけると嬉しいです。補足として、廃菌床堆肥利用の注意点を紹介した関連記事も合わせてご覧ください。
廃菌床の堆肥としての利用の注意点2

/** Geminiが自動生成した概要 **/
廃菌床を堆肥として利用する際の注意点として、菌糸の活動による土壌の酸性化が挙げられます。菌糸は養分吸収の際にプロトン(H⁺)を排出し、周囲の環境を酸性化します。活発な菌糸を含む廃菌床を土に混ぜ込むと、土壌pHが低下し、作物の生育に悪影響を与える可能性があります。堆肥として利用したいのは、菌糸が分解したリグニンの断片ですが、菌糸が活発な状態では分解が進んでいないため、効果が期待できません。したがって、キノコ栽培後の廃菌床は、更に発酵処理することで土壌への影響を軽減し、堆肥としての効果を高めることができます。
廃菌床の堆肥としての利用の注意点

/** Geminiが自動生成した概要 **/
アルミニウムは強い結合力を持つため、土壌中で様々な物質と結合し、植物の生育に影響を与える。特にポリフェノールと強く結合し、難溶性の錯体を形成する。このため、ポリフェノールが豊富な堆肥などを施用すると、アルミニウムが固定化され、植物への吸収が抑制される。これはアルミニウム毒性を軽減する一方で、ポリフェノール自体も植物にとって重要な役割を持つため、その効果も同時に減少する可能性がある。土壌中のアルミニウムとポリフェノールの相互作用は複雑で、植物の生育に多大な影響を与えるため、土壌管理において考慮すべき重要な要素である。
台風・大雨の自然災害の被害を軽減するために

/** Geminiが自動生成した概要 **/
保土谷UPLのネハリエースは、速効性と持続性を兼ね備えた酸素供給剤です。主成分の過酸化カルシウムが水と反応し、酸素を発生させます。同時に生成される水酸化カルシウムは土壌pHを改善し、根の健全な発育を促進。さらに、苦土や微量要素も配合し、植物の生育を総合的にサポートします。水稲の苗立ち促進、野菜・果樹・茶の生育促進、芝の活性化など幅広い用途に使用可能です。顆粒タイプで施肥作業も容易に行えます。
イネ科とマメ科の緑肥の混播

/** Geminiが自動生成した概要 **/
イネ科とマメ科の緑肥混播は、土壌改良に効果的である。荒れた土地での緑肥栽培で、エンバクとアルサイクローバの混播が成功した事例が紹介されている。アルサイクローバはシロクローバとアカクローバの中間的な性質を持ち、側根が繁茂しやすい。この混播により、クローバが土壌を覆い、エンバクがその間から成長することで、相乗効果が生まれた。ハウスミカン栽培においては、落ち葉の分解が進まない問題があり、土壌中の菌が少ないことが原因と考えられる。木質資材とクローバの組み合わせが有効だが、連作によるEC上昇が懸念される。そこで、EC改善効果を持つイネ科緑肥とクローバの混播が有効と考えられる。
エンドファイトと呼ばれる菌たち

/** Geminiが自動生成した概要 **/
エンドファイトは植物体内で共生する菌類で、植物に様々な利益をもたらします。植物は光合成産物を菌に提供する代わりに、菌は土壌から吸収しにくいリン酸やアミノ酸などを植物に供給します。さらに、エンドファイトは植物の免疫系を刺激し、病原菌への抵抗力を高め、発根も促進します。中には、植物を昆虫から守る物質や窒素を固定する菌も存在します。しかし、エンドファイトとの共生は、一般的な栽培環境では難しいようです。共生菌は多様な植物が生育する環境に多く存在し、栽培土壌には少ない傾向があります。また、土壌中に硝酸態窒素やショ糖が豊富にあると、共生関係が成立しにくいこともわかっています。そのため、水溶性窒素を含む堆肥での土作りは、エンドファイトとの共生を阻害する可能性があります。さらに、エンドファイトと植物の共生関係には相性があり、すべての植物が共生できるわけではありません。
ハウスミカン栽培の銅欠乏

/** Geminiが自動生成した概要 **/
ハウスミカン栽培では、石灰を好む、弱酸性土壌を好む、水はけの良い場所を好む、といった相反する条件が挙げられる。銅欠乏の視点から見ると、石灰施用によるpH上昇は銅の吸収阻害につながる。硝酸石灰や硫酸石灰はpH上昇は抑えるが、それぞれ土壌EC上昇や栄養塩増加による弊害がある。水はけの良さは、粘土鉱物の蓄積を防ぎ、銅吸収阻害を抑制する上で重要となる。しかし、栽培を続けると粘土鉱物の蓄積は避けられない。これらの複雑な要素がミカン栽培を難しくしている。近年では「ミカンが石灰を好む」は誤りで、土壌pHの微妙な変動と銅、亜鉛などの微量要素の吸収が重要との見解が出ている。
ミカンの木の落ち葉がなかなか土へと還らない

/** Geminiが自動生成した概要 **/
ミカンの落葉の分解遅延に関する考察を、好調な木の根元に生えたキノコの観察を通して行っている。好調な木には牛糞堆肥が施用され、その下にキノコが生えていた。キノコ周辺の落葉は分解が進んでいたが、全ての好調な木にキノコがあったわけではないため、相関関係は不明。牛糞堆肥は落葉分解菌(白色腐朽菌)に悪影響を与えるという説がある一方、キノコの存在は外部からの腐朽菌の持ち込みを示唆する。ハウスの密閉性向上により菌類生態系の単一化が落葉分解遅延の原因ではないかと推測。落葉分解促進策として、木質堆肥で落葉を覆う方法や、シロクローバの併用を提案。シロクローバは土壌物理性を向上させる効果があり、リンゴ園の事例を参考に挙げている。また、牛糞堆肥と落葉分解の関係性について、別の記事への参照を促している。
おがくずは堆肥として利用できるか?

/** Geminiが自動生成した概要 **/
おがくず堆肥化の課題は、C/N比の高さに加え、撥水性による水分浸透の悪さである。リグニン分解に必要な白色腐朽菌の活動には、十分な水分と栄養が不可欠。そこで、糖蜜の粘性と栄養を利用し、水分保持と菌の活性化を図ることが提案されている。糖蜜には糖、アミノ酸が豊富で、水分発生と菌の栄養源となる。さらに、pH調整に苦土石灰、微量要素供給と保水性を高めるためにベントナイトの添加も有効と考えられる。おがくずの撥水性を克服し、水分を保持させる工夫が、堆肥化成功の鍵となる。
褐色腐朽菌のいるところではリグニンはどうなるか?

/** Geminiが自動生成した概要 **/
水耕栽培に使用したヤシガラ培地に褐色腐朽菌が生えた場合、堆肥としての利用価値が問われる。褐色腐朽菌はリグニンを分解せず酸化型リグニンに変性させるため、土に馴染む断片化リグニンは少ない。そのため、堆肥としてそのまま利用する場合は、排水性向上等の効果は期待できるものの、土壌への馴染みは低い。より良質な堆肥にするには、乾燥・殺菌後、白色腐朽菌を繁殖させるか、おがくずと混ぜて撥水性を弱める方法が考えられる。培地にはコケも生えているため有機物量は多い。ただし、褐色腐朽菌は炭素量を多く残すため、酸化型リグニンの量は重要でない可能性もある。
水耕栽培の培地は露地栽培の堆肥として再利用できるか?

/** Geminiが自動生成した概要 **/
水耕栽培で使ったヤシガラ培地に黄色いキノコが生え、堆肥化の可能性について考察している。キノコの種類はコガネキヌカラカサタケと推定され、Wikipediaの情報から木の分解者である真正担子菌網に属するため、堆肥化に適している可能性がある。ただし、褐色腐朽菌の可能性が高く、木質成分の分解ではなく変性をしている可能性もあるため、褐色腐朽菌のリグニン変性メカニズムの理解が必要。なお、イボコガネテングタケの可能性も残っており、その場合は菌根菌のため堆肥には不向き。キノコの正確な同定には鮮明な写真と図鑑が必要。
とある籾殻が敷かれた通路の上での戦い

/** Geminiが自動生成した概要 **/
籾殻が敷かれた通路に生えるキノコは、他の菌類との生存競争を繰り広げている。籾殻は保水性と通気性を高め、キノコにとって有利な環境を作り出す。特に、窒素が少なくグルコースが多い環境で優位となる。鶏糞などの施肥はこの環境を一変させる可能性がある。窒素が増えることで、キノコは競争に敗れ、分解しやすいセルロースは消費され、分解しにくいリグニンが残るかもしれない。いずれにせよ、菌類によるセルロース分解は熱を発生させるため、地温上昇は避けられない。知識を持つことで、一見ただのキノコも、微生物間の攻防という新たな視点で見ることができる。
大きなキノコを見て思い出す師の言葉

/** Geminiが自動生成した概要 **/
師から堆肥のまき方を指導された時の経験から、高C/N比資材の堆肥化における窒素分の補給の必要性について疑問を呈している。師の指示通りに間伐材チップを高く積み上げたところ、発酵促進資材無しでも大型のキノコが多数発生した。通常、キノコの成長には窒素分が必要とされるが、日向に置かれたチップの山で、窒素分補給無しにキノコが繁殖したことは、従来のおがくず堆肥製造における家畜糞などによる窒素分補給の必要性に疑問を投げかける結果となった。この経験は、エノコロの成長に関する考察と同様に、窒素供給に関する固定観念への再考を促すものとなっている。
白色腐朽菌とトリコデルマの戦い2

/** Geminiが自動生成した概要 **/
白色腐朽菌とトリコデルマの生存競争において、培地成分が勝敗を左右する。硫安添加はトリコデルマを活性化させる一方、糖の種類も菌の繁殖に影響する。グルコース添加では白色腐朽菌、キシロースではトリコデルマが優勢となる。これは、米ぬかや糖蜜などデンプン質をキノコ培地に添加する既存のノウハウを裏付ける。つまり、窒素系肥料は控えめ、デンプン質は多めにするのが有効である。この知見はキノコ栽培だけでなく、堆肥作りにも応用できる可能性を秘めている。
白色腐朽菌とトリコデルマの戦い

/** Geminiが自動生成した概要 **/
高C/N比の枝を堆肥化するには、窒素源が必要という通説への疑問を提起している。リグニン分解に必要な白色腐朽菌は、窒素過多だとトリコデルマ菌との競合に敗北し、分解が阻害される。木質堆肥に牛糞などを加える慣習は、速効性窒素によりトリコデルマを優位にし、リグニン分解を阻害する可能性がある。キノコの生育を観察すれば、窒素源が必要か判断できるはずで、土壌中には窒素固定菌も存在する。記事では、窒素源添加はむしろ有害である可能性を指摘し、自然界の分解過程に学ぶべきだと主張している。
リグニンの分解に関与する白色腐朽菌

/** Geminiが自動生成した概要 **/
倒木の分解過程で、難分解性のリグニンがセルロースを覆っているため、多くの微生物はセルロースを利用できない。リグニンを分解できるのは白色腐朽菌と褐色腐朽菌で、この記事では白色腐朽菌に焦点を当てている。白色腐朽菌は木材に白い菌糸を張り巡らせ、リグニンを分解することで木を脆くする。リグニン分解後、セルロースを分解してエネルギーを得てキノコを形成する。その後、セルロースを好むトリコデルマ属菌が現れ、白色腐朽菌と競合が始まる。この競合が堆肥作りにおいて重要となる。
木質系の資材で堆肥を作りたければキノコ栽培から学べ

/** Geminiが自動生成した概要 **/
木質資材で堆肥を作るなら、キノコ栽培の知識が役立つ。キノコ栽培では、おがくずのような高C/N比資材に、さらにC/N比の高い米ぬかを加えてキノコを育てる。鶏糞のような窒素分の高い資材は使わない。にもかかわらず、キノコ栽培の副産物である廃培地は優れた堆肥となる。これは、キノコ(木材腐朽菌)がおがくずの分解を効果的に進めているため。高C/N比資材に窒素分を加えるという一般的な堆肥作りの常識とは異なるアプローチだが、キノコ栽培は効率的な堆肥作りのヒントを与えてくれる。農業における堆肥作りの検証不足が、非効率な方法の蔓延を招いている現状を指摘し、キノコとカビの生態学への理解の重要性を強調している。
菌床の主成分で使用されるコーンコブとは何だろう?

/** Geminiが自動生成した概要 **/
鉱物の風化と植物の死が土壌形成に不可欠である。岩石の風化は、物理的風化(温度変化、凍結融解)、化学的風化(水、酸素、二酸化炭素との反応)、生物的風化(植物の根の成長、地衣類の作用)によって起こる。風化によって岩石は細粒化し、新たな鉱物が生成される。一方、植物の死骸は土壌有機物の主要な供給源となる。枯れた植物は微生物によって分解され、腐植と呼ばれる複雑な有機物に変化する。腐植は土壌に養分を供給し、保水性や通気性を向上させる。風化によって生成された鉱物と植物由来の有機物が混ざり合い、肥沃な土壌が形成される。土壌生成は非常に長い時間を要するプロセスであり、岩石の種類、気候、生物活動などの様々な要因に影響される。
イネ科緑肥の効果、再考

/** Geminiが自動生成した概要 **/
露地ネギの畝間に緑肥マルチムギを導入したところ、ひび割れ多発土壌が改善し、ネギの生育も向上した。ひび割れの原因は腐植不足と水溶性成分蓄積(高EC)だが、マルチムギはこれらの問題を解決する。マルチムギは活性アルミナを無害化し、養分を吸収、土壌を柔らかくして排水性を向上させる。これにより、作物の発根が促進され、高EC土壌でも生育が可能になる。マルチムギとの養分競合も、基肥を発根促進に特化し、NPKを追肥で施すことで回避できる。結果として、発根量の増加は微量要素の吸収を促し、病害虫への抵抗性向上に繋がる。
マルチムギが劣化土壌に果敢に挑む

/** Geminiが自動生成した概要 **/
肥料の過剰供給による土壌劣化と、それに伴うスギナ繁茂、ひび割れ、保水力低下といった問題を抱えた畑で、マルチムギ導入による土壌改善を試みた事例を紹介。休ませることのできない畑で、連作と速効性肥料により土壌が悪化し、アルミニウム障害を示唆するスギナが蔓延していた。ネギの秀品率も低下するこの畑で、マルチムギを栽培したところ、スギナが減少し始めた。マルチムギは背丈が低いためネギ栽培の邪魔にならず、根からアルミニウムとキレート結合する有機酸を分泌する可能性がある。これにより、土壌中のアルミニウムが腐植と結合し、土壌環境が改善されることが期待される。加えて、マルチムギはアザミウマ被害軽減効果も期待できる。
銅を中心にして、リグニンを廻る植物とキノコたちの活動

/** Geminiが自動生成した概要 **/
植物は銅を利用して難分解性有機物リグニンを合成し、自らを害虫や病原菌から守る。キノコは銅を利用してリグニンを分解する。廃菌床はキノコ栽培後の培地で、キノコが生え終わった後もリグニン分解のポテンシャルが残っている。これを土壌に混ぜ込むことで、土壌はフカフカになり、植物の側根や毛細根の生育が促進される。さらに、廃菌床に残存する銅を作物が吸収することで、植物はより強くなり、病害虫への抵抗力が高まる。この一連の流れは、銅を介した植物とキノコのリグニンをめぐる攻防の延長線上にあると言える。ボルドー液のような銅製剤は、このメカニズムを応用した農薬である。
宮城県の肥料関係者向けに施肥設計の話をしました

/** Geminiが自動生成した概要 **/
京都農販アドバイザーとして、宮城県の肥料関係者向けに施肥設計の講演を行いました。普段、私が基肥設計で行っている背景にある考え方について解説しました。これは、施肥設計の見直しによって農薬防除の回数を減らせるという考えに基づいています。詳細については、サイトの記事「施肥設計の見直しで農薬防除の回数は確実に減らせる」(https://saitodev.co/article/施肥設計の見直しで農薬防除の回数は確実に減らせる) を参照ください。今回の講演を通して、参加者と相互に成長できればと考えています。
川に落ちている石を頼りに肥料の鉱山を探す

/** Geminiが自動生成した概要 **/
粘土鉱物を理解するために、筆者はまず「日本の石ころ標本箱」を参考に、仙台の名取川でゼオライトが採れることを知る。ゼオライトは土壌改良効果のある鉱物で、名取川上流に採掘鉱山があると記載されていた。Google Mapsで鉱山の場所を特定し、地質図を確認するも、海成堆積岩か非海成堆積岩か判別できなかった。仙台は元々は海であったことから、隆起した海成堆積岩と推測する。さらに土壌図も確認したが、特筆すべき点は見当たらなかった。これらの調査を通して、遠隔地にある鉱物の地質や土壌を特定することの難しさを実感する。
菜園ナビさんのオフ会で肥料の話を続きをしました

/** Geminiが自動生成した概要 **/
菜園ナビのオフ会で、肥料に関してさらに詳細なセミナーが開催されました。前回に引き続き、基肥を中心とした内容で、水溶性肥料とく溶性肥料の違い、基肥と追肥の考え方、水溶性肥料で基肥を構成した場合の作物の生育や秀品率への影響などが議論されました。生育への影響を考察するにあたっては、く溶性苦土の水溶性化や植物ホルモン、牛糞堆肥による土作りの価値なども考慮されました。肥料設計は、農薬の使用回数にも影響を与えるため、適切な施肥設計は重要です。より良い菜園ライフのために、参加者は肥料に関する理解を深めました。
水親和性セルロースとは何だろう?

/** Geminiが自動生成した概要 **/
水親和性セルロースは、植物の細胞壁を構成するセルロースを細かく分解した肥料です。通常のセルロースは水と馴染みにくいですが、水親和性セルロースは分解によって増えたOH基(ヒドロキシ基)が水分子と結びつくため、保水性が高まります。土壌にこれを施すことで、水分の保持を助け、植物の成長を促進する効果が期待できます。
亜鉛を含む農薬の作用をI-W系列から考えてみる
/** Geminiが自動生成した概要 **/
マンゼブは亜鉛を含む農薬で、I-W系列に基づくと、亜鉛は強力な結合力を持ちます。この亜鉛がマンガンや鉄を利用する酵素タンパク質に結合すると、酵素の作用が阻害されます。I-W系列では、結合力が強い金属ほどリグニンなど強固な物質の合成に関与しますが、結合力が強すぎると生命活動に悪影響を及ぼします。銅は生理作用を維持できる範囲で結合力が強く、リグニン合成に必須ですが、アルミニウムは強すぎて毒性があります。亜鉛は銅に次ぐ結合力を持ち、生命活動に不可欠な微量要素でもあります。マンゼブが亜鉛を含んでいるため、病原菌の酵素を阻害する効果がありますが、植物は微量要素として亜鉛を利用するため、予防薬として用いることができます。
植物はどのようにしてシリカを吸収するか?

/** Geminiが自動生成した概要 **/
植物は土壌中からケイ酸を吸収し、強度を高める。吸収の形態はSi(OH)4で、これはオルトケイ酸(H4SiO4)が溶解した形である。オルトケイ酸はかんらん石などの鉱物に含まれ、苦鉄質地質の地域ではイネの倒伏が少ない事例と関連付けられる。一方、二酸化ケイ素(シリカ)の溶解による吸収は限定的と考えられる。ケイ酸塩からの吸収は、酸による反応が推測されるが、詳細は不明。可溶性ケイ酸はアルミニウム障害も軽減する効果を持つ。つまり、イネのケイ酸吸収は、土壌中の鉱物組成、特にかんらん石の存在と関連し、可溶性ケイ酸の形で吸収されることで、植物の強度向上に寄与する。
植物が利用できるシリカはどこにある?

/** Geminiが自動生成した概要 **/
あそこの畑がカリ不足している理由を、土壌中のカリウムの形態に着目して解説している。日本の土壌はカリウム含有量が多いと言われるが、それはカリ長石などの形で存在しており、植物が直接利用できる形態ではない。植物が利用できるのは土壌溶液中のカリウムイオンだが、その量は土壌全体の数%に過ぎない。土壌溶液中のカリウムイオンが不足すると、植物はカリウム欠乏症を起こし、収量低下や品質劣化につながる。したがって、土壌中のカリウム総量ではなく、実際に植物が利用できる形態のカリウム量を把握することが重要である。
台風でも倒伏しないイネ

/** Geminiが自動生成した概要 **/
長野県栄村小滝集落では、特別な農法により高品質な米が栽培され、台風による倒伏被害もほとんど見られなかった。倒伏した一部の水田と健全な水田の違いは、赤い粘土の客土の有無であった。イネの倒伏耐性向上に有効とされるシリカに着目すると、赤い粘土に含まれる頑火輝石やかんらん石などの鉱物がケイ酸供給源となる可能性がある。これらの鉱物は玄武岩質岩石に多く含まれ、二価鉄やマグネシウムも豊富に含むため、光合成促進にも寄与すると考えられる。赤い粘土に含まれる成分が、米の品質向上と倒伏耐性の鍵を握っていると考えられるため、イネとシリカの関係性について更なる調査が必要である。ただし、玄武岩質土壌はカリウムが少なく、鉄吸収が阻害されると秋落ちが発生しやすい点に注意が必要。
葉物野菜は寒さに触れて甘くなる

/** Geminiが自動生成した概要 **/
スクロースは、グルコースとフルクトースがグリコシド結合した二糖類で、砂糖の主成分。植物では光合成産物として葉で合成され、師管を通って貯蔵器官や成長部位へ輸送される。ショ糖とも呼ばれる。非還元糖であり、変旋光を示さない。水への溶解度は高く、甘味料として広く利用される他、保湿剤や医薬品添加物としても使用される。加水分解によりグルコースとフルクトースになり、転化糖と呼ばれる。スクロースは、生物にとって重要なエネルギー源であり、植物の成長や代謝に不可欠な役割を果たす。
味覚とアミノ酸
/** Geminiが自動生成した概要 **/
筆者はアミノ酸肥料の効果、特に食味向上への影響について考察している。人間の味覚は甘味、塩味、酸味、苦味、旨味から構成され、アミノ酸は甘味、旨味、酸味、苦味を持つ。旨味はグルタミン酸とアスパラギン酸、甘味はアラニン、グリシン、スレオニン、セリン、プロリン、苦味はアルギニン、イソロイシン等が持つ。この味覚とアミノ酸の関係性を踏まえ、アミノ酸肥料の施肥が作物の味にどう影響するかを過去の投稿記事の構成比と合わせて考察しようとしている。
亜リン酸肥料、再考
/** Geminiが自動生成した概要 **/
果実内発芽は、土壌中のカリウム欠乏が原因で発生する。カリウムは植物の浸透圧調節や酵素活性に不可欠であり、不足すると果実の糖度低下や組織の脆弱化を引き起こす。結果として、種子が果実内で発芽しやすい環境が整ってしまう。果実内発芽を防ぐためには、土壌への適切なカリウム供給が重要となる。土壌分析に基づいたカリウムの施肥管理や、カリウムを多く含む肥料の利用が有効である。
アミノ酸肥料には動物性と植物性があるけれど、再考
/** Geminiが自動生成した概要 **/
植物へのアミノ酸の効果は多岐に渡り、それぞれの種類によって異なる影響を与えます。グルタミン酸は光合成産物の転流促進やクロロフィル合成に関与し、グリシンもクロロフィル合成に寄与します。プロリンは浸透圧調整や抗酸化作用、乾燥ストレス耐性を高めます。アラニンは同様に浸透圧調整に関わり、バリン、ロイシン、イソロイシンは分枝鎖アミノ酸としてタンパク質合成や植物ホルモンの前駆体となります。リジンは成長促進や病害抵抗性向上に働き、メチオニンはエチレン合成に関与します。アスパラギン酸は窒素代謝や糖新生に関わり、フェニルアラニンはリグニンの合成や花の色素形成に関与。これらのアミノ酸は単独ではなく、相互作用しながら植物の成長や環境ストレスへの耐性に影響を与えます。ただし、過剰な施用は逆効果になる可能性もあるため、適切な量と種類を選ぶことが重要です。
植物ホルモンから再び牛糞堆肥による土作りの価値を問う

/** Geminiが自動生成した概要 **/
植物ホルモン、サイトカイニンはシュートの発生を促進し、根の周辺に窒素系の塩が多いと発根が抑制される。これは、植物が栄養豊富な環境ではシュート形成を優先するためと考えられる。 農業において初期生育の発根は追肥の効果に影響するため、発根抑制は問題となる。慣行農法のNPK計算中心の施肥設計は、水溶性の栄養塩過多になりやすく発根を阻害する可能性がある。牛糞堆肥は塩類集積を引き起こし、特に熟成が進むと硝酸態窒素が増加するため、発根抑制のリスクを高める。 結局、NPK計算に基づく施肥設計は見直しが必要であり、牛糞堆肥の利用は再考を促す。
酸素供給剤を試した方から

/** Geminiが自動生成した概要 **/
京都農販のTwitterで、酸素供給剤(過酸化石灰)を使った九条ネギのハウス栽培で成長に大きな差が出たことが報告された。酸素供給剤は水と反応し、消石灰と過酸化水素を発生させる。植物は過酸化水素からカタラーゼ反応で酸素を取り込み、同時に発生した消石灰は土壌pHを上昇させ、一部の微生物を殺菌する。これにより生育環境が改善され、肥料の吸収効率も高まる。酸素供給剤は土壌中で徐々に効果を発揮するため、大雨など病気になりやすい時期の予防にもなる。ただし、石灰であるため土壌中の石灰量に注意が必要で、過剰施用はカルシウム過剰による欠乏を引き起こす可能性があるため、pH調整には炭酸苦土などを代替利用すると良い。
個々のアミノ酸は植物にどのような効果をもたらすのか?

/** Geminiが自動生成した概要 **/
アミノ酸はタンパク質の構成要素であるだけでなく、個々のアミノ酸自体が植物に様々な影響を与える。例えば、プロリンは乾燥ストレス時に細胞内に蓄積し、植物の耐性を高める。また、チロシンは植物ホルモンであるサリチル酸の前駆体であり、サリチル酸は植物の病害抵抗性や成長に関与する。このように、アミノ酸は単なる材料ではなく、植物の様々な生理機能に直接関わる重要な役割を担っている。
有機態窒素とは何ですか?

/** Geminiが自動生成した概要 **/
有機態窒素とは、肥料中の炭素(C)と窒素(N)を含む有機化合物、主にタンパク質、ペプチド、アミノ酸です。植物は窒素を無機態で吸収すると考えられていたため、有機態窒素は土壌中で無機化される過程でゆっくりと肥効を発揮するとされていました。家畜糞堆肥にも、未消化の飼料や微生物の死骸などに由来するタンパク質が含まれるため、有機態窒素を含んでいます。
鉱物の風化と植物の死が石を土へと変える

/** Geminiが自動生成した概要 **/
岩石が風化して粘土鉱物となり、更に植物の死骸が分解された腐植と結合することで、植物にとって良好な土壌環境が形成される。腐植と粘土鉱物は互いに分解を防ぎ合い安定した状態を保ち、作物の生育を促進する。植物のリグニンは、植物体を固くする役割を持つと同時に、分解されて土壌中で鉱物と馴染み、土壌改良に貢献する。この自然界の精巧なメカニズムは、偶然か必然かは不明だが、絶妙なバランスの上に成り立っており、このバランスが崩れると土壌環境は容易に変化する。腐植と粘土鉱物の結合、リグニンの分解による土壌改良効果など、自然界の巧妙な仕組みが土壌の肥沃度を高めている。
同型置換で粘土鉱物の持つ保肥力を高める

/** Geminiが自動生成した概要 **/
粘土鉱物の保肥力向上に寄与する同型置換について解説。Si四面体やAl八面体構造において、Si⁴⁺がAl³⁺、Al³⁺がMg²⁺などに置換されることで、全体が負に帯電する。この負電荷が養分を引き付けるため、保肥力が高まる。置換されたAl³⁺は水と反応し、水酸化アルミニウムAl(OH)₃とH⁺を生成する。この水酸化アルミニウムは、正長石からカオリナイト(1:1型)が形成される過程にも関与する。同型置換は粘土鉱物の風化過程で発生し、2:1型から1:1型への変質にも関連している。
粘土鉱物の構造

/** Geminiが自動生成した概要 **/
粘土鉱物はSiO四面体とAl八面体の組み合わせで、1:1型(カオリナイト等)と2:1型(モンモリロナイト等)がある。層間の水(層間水)の広さが保肥力(CEC)に関係し、モンモリロナイトの方がCECが高い。SiO四面体は珪素(Si)を中心とした四面体構造、Al八面体はアルミニウム(Al)を中心とした八面体構造で、これらが層状に重なって粘土鉱物を形成する。粘土質土壌でも、粘土鉱物の種類によって保肥力は異なるため、期待する効果が得られない場合もある。
粘土鉱物を理解する旅3

/** Geminiが自動生成した概要 **/
ブルカノ式火山の火山灰土壌は、輝石や角閃石といった造岩鉱物を多く含み、植物の生育に有利な性質を持つ。これらの鉱物は風化速度が速いため、カリウムやマグネシウム、カルシウム、鉄などの植物必須元素を供給する。また、風化過程で粘土鉱物が生成され、保水性や保肥性を向上させる。ただし、リン酸固定能が高いため、リン酸肥料の施用には注意が必要となる。さらに、火山性土壌特有の軽石や火山礫は、土壌の通気性や排水性を高める効果がある。これらの特性から、ブルカノ式火山由来の土壌は、適切な管理を行うことで高い生産性を持つ農地となる可能性を秘めている。
粘土鉱物を理解する旅2

/** Geminiが自動生成した概要 **/
粘土鉱物の理解を深めるため、各地のジオパークや博物館で得た情報をもとに、土壌における役割を考察している。地震や火山活動により長石などのアルミノ珪酸塩が粘土鉱物に変質する過程に着目し、図鑑で長石の種類や変質経路を調べた。温泉のpH変化と粘土鉱物の関係、黒ボク土のアロフェンと非アロフェンの起源にも触れ、どちらもアルミノ珪酸塩の二次鉱物であることを指摘。最終的に、アルミノ珪酸塩の分布と火成岩の関係へと議論を展開する。
粘土鉱物を理解する旅

/** Geminiが自動生成した概要 **/
筆者は、土の成り立ち、特に粘土鉱物について深く知りたいと考えています。土壌学では粘土鉱物の性質について学びましたが、生成過程や分布など、鉱物としての視点からの情報が不足していました。そこで、各地のジオパークや博物館を訪れ、地質や岩石について学びを深めてきました。その過程で、粘土鉱物が珪酸塩鉱物、特にテクトケイ酸塩と関連性が深いことを知り、さらなる探求を続けています。
乾燥ストレスから再び牛糞堆肥による土作りの価値を問う

/** Geminiが自動生成した概要 **/
牛糞堆肥の土作りにおける価値を、乾燥ストレスと高塩ストレスの観点から再考する。植物は乾燥/高塩ストレスによりプロリンを合成し、これが虫の食害を誘発する。牛糞堆肥は硝酸態窒素や塩分を多く含み、ECを高め高塩ストレスを招き、結果的にプロリン合成を促進、虫を引き寄せる。また、プロリン合成の材料となる硝酸根も供給するため、一見健全な成長を促すが、実際は虫害リスクを高めている。つまり、窒素過多や牛糞堆肥過剰施用で虫害が増えるのは、高塩ストレスによるプロリン合成促進が原因と考えられる。
客土で川砂を入れる意義再び

/** Geminiが自動生成した概要 **/
大鹿村の中央構造線安康露頭では、日本列島を東西に分ける大断層である中央構造線の露頭を見ることができる。ここでは、内帯の領家変成帯と外帯の三波川変成帯が接しており、異なる時代の地層が押し付け合う様子が観察できる。領家変成帯は高温低圧型変成岩で構成され、花崗岩などがみられる。一方、三波川変成帯は低温高圧型変成岩で、緑色片岩や青色片岩などが特徴的。この露頭は、地質学的に重要なだけでなく、断層活動による地殻変動を理解する上で貴重な場所となっている。
仙台市内で肥料関係者向けに施肥設計の話をしました

/** Geminiが自動生成した概要 **/
京都農販のアドバイザーとして、仙台市内で肥料関係者向けに施肥設計のセミナーを実施しました。写真のように、参加者に向けて講演を行いました。京都農販のウェブサイト(https://kyonou.com/)もご参照ください。 このセミナーを通して、肥料関係者と共に施肥設計に関する知識・技術の向上を目指しました。相互の学びを通して、より効果的な施肥設計を実現し、農業の発展に貢献できればと考えています。
枕状溶岩と出会いに高槻の本山寺へ3

/** Geminiが自動生成した概要 **/
高槻の本山寺周辺の枕状溶岩観察の後、川久保渓谷の緑色岩エリアを訪れた筆者は、白っぽい岩に緑色の斑点がある緑色岩を発見する。崩れ落ちた岩片は表面が薄い緑色で、これは緑泥石によるものだと推測される。この緑色岩を注視した筆者は、破砕すれば鉱物系の肥料として利用できる可能性を感じ、客土用の土として緑色岩が有効なのではないかと考察する。