ブログ内検索

プログラミング教材開発
大阪府高槻市原地区で肥料教室を開いています
検索キーワード:「シリカ」
 

稲作の土壌分析で注意すべき点

/** Geminiが自動生成した概要 **/
稲作土壌分析でまず見るべきはpH。pH5.5以下は鉄の溶脱を招き秋落ちの原因に。土壌pH低下は2:1型粘土鉱物(モンモリロナイト等)の減少が原因の可能性があり、これらは風化でpHを上げる働きを持つ。相談者の土壌ではpH改善傾向が見られ、CEC向上も確認。2:1型粘土鉱物の施肥が効果を発揮していると考えられる。土壌劣化は2:1型粘土鉱物の消耗と捉えられ、ケイ酸供給不足にも繋がるため、猛暑対策としても重要。

 

カリ肥料の原料となる白榴石

/** Geminiが自動生成した概要 **/
白榴石はカリウムを多く含むため肥料として使われるケイ酸塩鉱物です。輝石と同じケイ酸の形なのに、アルミニウムが入る隙間があるのが化学的に不思議です。白榴石はカリウム豊富でシリカが少ない火成岩にできますが、日本の火成岩分類では該当するものがなく、海外では異なる可能性があります。このことから、土壌を理解するには火成岩の知識がまだまだ必要だと感じます。

 

改めて蛇紋石を見る

/** Geminiが自動生成した概要 **/
蛇紋石は、かんらん石が水と反応して生成されるケイ酸塩鉱物です。化学的には1:1型粘土鉱物に分類されますが、その構造は異なる可能性があります。愛媛大学の研究では、蛇紋石の一種であるアンチゴライトの結晶構造が、Mg八面体とSi四面体が層状に重なっていることが判明しています。この構造は1:1粘土鉱物の構造に似ており、蛇紋石が1:1粘土鉱物として分類される理由を説明できる可能性があります。

 

造岩鉱物の理解を深めるためにケイ酸についてを学ぶ

/** Geminiが自動生成した概要 **/
ケイ酸は、ケイ素と酸素で構成され、自然界では主に二酸化ケイ素(SiO2)の形で存在する。水に極わずか溶け、モノケイ酸として植物の根から吸収される。 しかし、中性から弱酸性の溶液では、モノケイ酸同士が重合して大きな構造を形成する。この重合の仕方は、単鎖だけでなく複鎖など、多様な形をとる。 造岩鉱物は、岩石を構成する鉱物で、ケイ酸を含有するものが多い。熱水やアルカリ性の環境では、ケイ酸塩が溶けやすくなる。

 

稲作でケイ酸を効かせるにはどうすれば良いのか?

/** Geminiが自動生成した概要 **/
稲作でケイ酸を効かせるには、田に水を溜めた状態を保つことが重要です。ケイ素を含む鉱物が水に溶けてケイ酸イオンを放出するためには、大量の水が必要です。イネはケイ酸イオンを細胞に取り込み、細胞壁を強化して倒伏を防ぎます。 田から水を抜く期間を短くすることで、ケイ酸イオンの溶出とイネの吸収が促進されます。中干し期間を削減する稲作法では、ケイ酸を利用することで草丈を抑制し、倒伏を防止する効果が期待できます。

 

水田のメタン発生を抑制する為の鉄剤を考える

/** Geminiが自動生成した概要 **/
水田のメタン発生抑制のために鉄剤を検討しており、今回は鋼鉄スラグに着目しています。鋼鉄スラグは鉄鋼生産時の副産物で、シリカなどの不純物と石灰から成ります。鉄分が含まれているためメタン抑制効果が期待できますが、石灰が多く含まれるため、効果があるのか疑問が残ります。そこで、鋼鉄スラグについてさらに詳しく調べています。

 

土壌の物理性の向上に合わせた減肥は難しい

/** Geminiが自動生成した概要 **/
土壌の物理性を高めた田んぼで、減肥したにも関わらず、台風による稲の倒伏が発生。これは、土壌の地力や肥効が向上した結果、予想以上にイネが成長したためと考えられます。特に、手植え区では株間が広いため、穂重が増加した可能性があります。 一方、機械植え区では倒伏が見られなかったことから、株間と風通しの関係も示唆されます。 今回の結果から、土壌改良後の施肥設計は難しい課題であることが浮き彫りになりました。今後は、さらなる減肥や株間調整など、対策が必要となります。

 

稲作の害虫の天敵が集まってくる田の続き

/** Geminiが自動生成した概要 **/
イネはシリカを吸収すると、葉が硬くなり倒伏しにくくなるだけでなく、病気や害虫への抵抗力も高まります。これは、シリカが細胞壁に沈着することで物理的な強度が増すとともに、植物の防御機構を活性化する働きがあるためです。 具体的には、シリカはイネの葉に多く蓄積され、表皮細胞の細胞壁を強化することで、害虫の侵入や病気の感染を抑制します。また、シリカはイネの免疫システムを刺激し、病原菌に対する抵抗力を高める効果もあります。 さらに、シリカはイネの光合成を促進し、収量増加にも貢献します。これは、シリカが葉の表面に薄い層を作り、光を効率よく吸収できるようになるためです。

 

飼料米の品種選定は何を意識する?

/** Geminiが自動生成した概要 **/
水稲であるイネは、湛水状態の土壌では酸素不足になりやすい。そのため、根の呼吸を維持するために、通気組織が発達している。しかし、土壌の物理性が悪いと、通気組織の働きが阻害され、根腐れが発生しやすくなる。 家畜糞を施肥すると、土壌中の有機物が分解される過程で、メタンや硫化水素などのガスが発生する。これらのガスは、イネの根の生育を阻害する可能性があるため、家畜糞を施肥する場合は、土壌の物理性を向上させておくことが重要となる。

 

物理性の向上 + レンゲ栽培 + 中干しなしの稲作の新たに生じた課題

/** Geminiが自動生成した概要 **/
レンゲ栽培と中干しなし稲作で、土壌の物理性向上による肥料過多と倒伏が課題として浮上。レンゲによる窒素固定量の増加と、物理性向上による肥料効能の持続が重なった可能性。中干しのメリットは物理性向上により減少し、デメリットである高温障害回避と益虫増加の方が重要となる。解決策は施肥量減らし。この技術確立は、肥料・農薬削減によるSDGs、土壌炭素貯留によるCO2削減、鉄還元細菌によるメタン発生抑制に繋がり、持続可能な稲作に貢献する。

 

いもち病対策の要のMELは何から合成されるか?

/** Geminiが自動生成した概要 **/
イネの葉面常在菌が合成するマンノシルエリスリトールリピッド(MEL)は、いもち病対策の鍵となる。MELは脂質と糖から合成されるが、脂質源は葉のクチクラ層を分解することで得られた脂肪酸、糖は葉の溢泌液に由来すると考えられる。つまり、常在菌はクチクラを栄養源として増殖し、MELを生産する。MELがあると様々な菌が葉に定着しやすくなり、いもち病菌のα-1,3-グルカンを分解することで、イネの防御反応を誘導する。このメカニズムを機能させるには、健全なクチクラ層と十分な溢泌液が必要となる。周辺の生態系、例えば神社や古墳の木々なども、有益な菌の供給源として重要な役割を果たしている可能性がある。

 

トマトにどうやってケイ素肥料を効かせるか?

/** Geminiが自動生成した概要 **/
土壌微生物とケイ素は密接な関係を持つ。植物はケイ酸を吸収し、一部を土壌に放出する。このケイ酸は、特定の微生物によって利用される。例えば、珪藻や放散虫はケイ酸を使って殻を形成し、バクテリアの中にはケイ酸を細胞壁に取り込むものもいる。また、ケイ酸は土壌構造の改善にも寄与し、微生物の生育環境を良好にする。さらに、ケイ酸は植物の病害抵抗性を高める働きがあり、間接的に微生物の活動にも影響を与える。土壌中のケイ酸の存在は、微生物群集の構成や活動に影響を及ぼし、ひいては植物の生育にも関与する複雑な相互作用が存在する。

 

イネのウンカ類への抵抗性

/** Geminiが自動生成した概要 **/
イネのウンカ抵抗性に関与する物質、安息香酸ベンジルは、フェニルアラニン由来のベンジルアルコールやベンズアルデヒドから合成される。ウンカの種類によって誘導抵抗性物質の発現量が異なることが報告されている。光合成を高め、自然に抵抗性を高めることが重要であり、シリカ吸収や川からの養分供給が有効である。登熟期には穂への養分転流を抑え、健全な葉でウンカの被害ピーク期を迎えることが重要となる。亜鉛欠乏はオートファジーを誘導し、老化を促進するため、適切な亜鉛供給も抵抗性強化に繋がる。

 

ケイ素を利用する細菌たち

/** Geminiが自動生成した概要 **/
水田土壌中の細菌がイネのケイ素吸収に関与する可能性が示唆されている。ケイ素を取り込む細菌24株は全てバチルス属で、食中毒菌のセレウス菌(B.cereus)や生物農薬に使われるBT剤(B. thuringiensis)なども含まれる。バチルス属はケイ素の殻を作ることで過酷な環境を生き抜くとされ、B.cereusはケイ素により耐酸性を得ている可能性がある。ケイ素の吸収にはマンガン、亜鉛、カルシウム、鉄等のミネラルが必要で、特に水田で欠乏しやすい亜鉛の供給が重要となる。土壌中の細菌がケイ素を吸収しやすい環境を整えることで、猛暑下でもイネの秀品率維持に繋がる可能性がある。

 

ケイ酸苦土肥料から稲作を模索する

/** Geminiが自動生成した概要 **/
ケイ酸苦土肥料を用いた稲作の可能性を探る記事。ケイ酸は稲作に有効だが、風化しにくい石英ではなく、風化しやすいケイ酸塩鉱物である必要がある。ケイ酸苦土肥料の原料は蛇紋岩で、風化しやすいネソケイ酸塩であるかんらん石が変質して生成される蛇紋石を主成分とする。水田上流にこれらの岩石が存在し、水路がコンクリートで固められていない環境であれば、ケイ酸が水田に供給され、猛暑でも登熟不良を起こしにくい稲作が可能になる可能性がある。しかし、そのような環境は標高の高い涼しい地域に限られる。蛇紋石とかんらん石に加え、緑泥石の活用にも言及。さらに、植物が利用できるケイ酸は、微生物が鉱物から溶出したものが多いと指摘している。

 

猛暑日が多い中で中干しの意義を再検討する

/** Geminiが自動生成した概要 **/
猛暑日が続く中、稲作における中干しの意義を再検討する必要がある。高温は光合成の低下や活性酸素の増加につながり、葉の寿命に悪影響を与える。中干しは発根促進効果がある一方、高温時に葉温上昇を招く可能性もある。レンゲ栽培田では中干しによるひび割れがないにも関わらず、高温に耐えているように見える。ケイ酸質肥料は高温時の光合成を改善し、特に中干し後の幼穂形成期に吸収量が増加する。ケイ酸吸収が少ないと気孔の開きが悪くなり、葉温上昇につながる。また、珪藻等の微細藻類の殻は、植物が吸収しやすいシリカの形になりやすい可能性がある。

 

葉の色が濃いイネはいもち病に罹りやすい

/** Geminiが自動生成した概要 **/
イネはケイ酸を吸収し、葉の表皮細胞にケイ化細胞と呼ばれる硬い層を形成する。このケイ化細胞は物理的強度を高め、病原菌の侵入や害虫の食害を防ぐ役割を果たす。特にいもち病菌の侵入を抑制する効果が大きく、ケイ酸吸収を促進することで、いもち病抵抗性を高めることができる。また、ケイ化細胞は葉の垂直方向への成長を促進し、受光態勢を改善することで光合成効率を高める効果も期待される。さらに、蒸散量の抑制による耐乾性向上にも繋がる。土壌中のケイ酸供給量を増やす、もしくはイネのケイ酸吸収能力を高めることで、これらの効果を発揮し、イネの生育を向上させ、病害抵抗性を高めることができる。

 

レンゲ米の水田からイネの生長を考える

/** Geminiが自動生成した概要 **/
イネはケイ酸を吸収し、葉や茎に蓄積することで、病害虫や倒伏への抵抗力を高めます。ケイ酸は細胞壁を強化し、物理的なバリアを形成することで、病原菌の侵入や害虫の食害を防ぎます。また、茎を硬くすることで倒伏しにくくなり、穂数を増やし、収量向上に貢献します。さらに、ケイ酸は光合成を促進し、窒素の過剰吸収を抑える効果も持ち、健全な生育を促します。葉に蓄積されたケイ酸は、古くなった葉から若い葉へと転流しないため、古い葉ほどケイ酸濃度が高くなります。このため、ケイ酸はイネの生育にとって重要な要素であり、不足すると収量や品質に悪影響を及ぼします。

 

レンゲ米は美味しいのか?の続き

/** Geminiが自動生成した概要 **/
鉄は植物の生育に必須だが、アルミニウムは毒性を示す。土壌中の鉄は主に三価鉄(Fe3+)として存在し、植物はそれを二価鉄(Fe2+)に変換して吸収する。この変換には、根から分泌されるムシゲニンや、土壌中の微生物が関与する。ムシゲニンは鉄とキレート錯体を形成し、吸収を促進する。一方、アルミニウムもムシゲニンと錯体を形成するが、植物はアルミニウムを吸収せず、錯体のまま土壌中に放出することで無毒化する。レンゲなどの緑肥は土壌微生物を増やし、ムシゲニン分泌も促進するため、鉄吸収の向上とアルミニウム無毒化に貢献する。結果として、健全な植物生育が促される。

 

レンゲ米は美味しいのか?

/** Geminiが自動生成した概要 **/
レンゲ米は窒素固定による肥料効果以上に、土壌微生物叢や土壌物理性の向上、連作障害回避といった効果を通じて美味しさを向上させると推測される。レンゲ栽培は土壌への窒素供給量自体は少ないが、発根量が多いほど効果が高いため、生育環境の整備が重要となる。また、美味しい米作りには水に含まれるミネラルやシリカの吸収も重要であり、レンゲ栽培はこれらの吸収も促進すると考えられる。油かすや魚粉といった有機肥料も有効だが、高評価の米産地ではこれらを使用していない例もあり、美味しさの要因は複雑である。

 

摂津峡で緑の石探し

/** Geminiが自動生成した概要 **/
著者は、米の美味しさは水質、ひいては上流の岩石に含まれるかんらん石や緑泥石由来のマグネシウムとケイ酸に関係すると仮説を立て、摂津峡で緑の石探しを行った。芥川で緑泥石を含む緑色岩を発見した経験と、大歩危で緑色の岩石の種類の多様性を知ったことで、著者の岩石観察眼は向上していた。摂津峡では、一見緑色に見えない岩石にも接写で緑色の鉱物が含まれていることを確認。更に、周辺には濃い緑色の石が存在し、それらが水質に影響を与えていると推測した。これらの観察は、土壌形成や岩石の種類に関する過去の探求と関連づけられている。

 

蛇紋石という名の粘土鉱物

/** Geminiが自動生成した概要 **/
蛇紋石は、蛇紋岩の主成分である珪酸塩鉱物で、苦土カンラン石や頑火輝石が熱水変質することで生成される。肥料として利用される蛇紋石系苦土肥料は、残留物として1:1型粘土鉱物を土壌に残す可能性がある。蛇紋石自身も1:1型粘土鉱物に分類される。1:1型粘土鉱物は、一般的にCECや比表面積が小さく保肥力が低いとされるが、蛇紋石は他の1:1型粘土鉱物と比べて高いCECを持つ。この特性は、土壌への養分供給に影響を与える可能性があり、更なる研究が必要である。

 

注目の資材、ゼオライトについて再び

/** Geminiが自動生成した概要 **/
ゼオライトは、沸石とも呼ばれる多孔質のアルミノケイ酸塩鉱物で、粘土鉱物のように扱われるが粘土鉱物ではない。凝灰岩などの火山岩が地中に埋没し、100℃程度の熱水と反応することで生成される。イオン交換性や吸着性を持つ。記事では、凝灰岩が熱水変質によってゼオライトや粘土鉱物などに変化する過程が解説され、同じ火山灰でも生成環境によって異なる鉱物が形成されることが示されている。ベントナイト系粘土鉱物肥料の原料である緑色凝灰岩とゼオライトの関連性にも触れられている。

 

シリケイトメルト内の水による反応

/** Geminiが自動生成した概要 **/
高温のシリケイトメルト(溶けたケイ酸塩)中では、水は水酸基(OH)や分子水として存在し、ケイ素周りのM-O-M構造と反応する。具体的には、H₂O + M-O-M ⇔ 2M-OH の反応式で表され、水は網目形成イオン(Si, Al)と反応し、OH基を形成する。これは、熱水変質作用で鉱物にOH基が付与される現象と類似している。つまり、温度は大きく異なるが、シリケイトメルトと堆積した珪酸塩鉱物における水の反応には共通点があると考えられる。

 

粘土鉱物が出来る場所

/** Geminiが自動生成した概要 **/
凝灰岩が地下深くに埋没し、熱水変質作用を受けることで粘土鉱物が生成される。熱源の深さや熱水の流動性、水素イオン濃度、温度などが生成される粘土鉱物の種類(スメクタイト、沸石など)に影響する。山陰地方で産出される沸石凝灰岩は土壌改良材として利用される。モンモリロナイトや沸石は、凝灰岩が熱水変質作用を受けた後、地質学的イベントで隆起し地表に出現することで採掘可能になる。これらの粘土鉱物を土壌に投入すると、非アロフェン質の黒ボク土へと変化する可能性がある。

 

竹野のグリーンタフを見ながら土の形成に思いを馳せる

/** Geminiが自動生成した概要 **/
黒ボク土は、火山灰土壌であり、保水性、通気性、排水性に優れ、リン酸固定が少ないため、肥沃な土壌として認識されている。しかし、窒素供給力が低いという欠点も持つ。黒ボク土壌で窒素飢餓を起こさないためには、堆肥などの有機物施用と適切な土壌管理が必要となる。 記事では、鳥取砂丘の砂質土壌に黒ボク土を客土した圃場での栽培事例を通して、黒ボク土の特性と砂質土壌との比較、土壌改良の難しさについて考察している。黒ボク土は砂質土壌に比べて保水性が高い一方で、窒素供給力が低いことから、窒素飢餓対策が必要となる。また、砂質土壌に黒ボク土を客土しても、水管理の難しさは解消されず、土壌改良は容易ではないことが示唆されている。

 

露地野菜の連作の間に稲作をかます意義

/** Geminiが自動生成した概要 **/
京都市では、ネギの連作で疲弊した畑を回復させるため、一時的に水田にして稲作を行う慣習がある。水田化は、ミネラル供給や土壌粒子の変化だけでなく、肥料分の排出効果も期待されている。しかし、単なる肥料分の排出よりも重要な効果として、養分の形態変化が考えられる。 水田では、牛糞堆肥由来の窒素、リン酸、カルシウムが蓄積する。リン酸は緑藻の繁茂を促し、それを餌とするカブトエビやタニシが増殖する。これらの生物は、殻形成にカルシウムを利用し、有機物を摂取することで、水溶性無機養分を有機物に変換して堆積させる。水田から排出されるカブトエビやタニシは、カルシウムを畑の外へ運び出す役割も果たす。 つまり、水田化は養分を洗い流すのではなく、有機物として土壌に固定化することで、連作障害を軽減していると考えられる。

 

スギナは酸性土壌を好むらしい

/** Geminiが自動生成した概要 **/
スギナは酸性土壌を好み、活性アルミナが溶出し他の植物の生育を阻害するような環境でも繁茂する。これはスギナがケイ酸を多く吸収する性質と関係している可能性がある。酸性土壌ではケイ酸イオンも溶出しやすく、スギナはこれを利用していると考えられる。イネ科植物もケイ素を多く蓄積することで知られており、スギナも同様にケイ酸を吸収することで酸性土壌への適応を可能にしているかもしれない。また、スギナ茶を飲んだ経験や、土壌の酸性度に関する考察も述べられている。

 

土壌微生物とケイ素

/** Geminiが自動生成した概要 **/
植物が利用しやすいケイ素の在処を探る中で、土壌微生物とケイ素の意外な関係が見つかった。コショウ科植物*Piper guinensis*の根から単離された*Streptomyces*属細菌が生成するシデロフォアは、通常鉄と結合するが、ケイ素にも安定的に結合することが判明した。シデロフォアは鉄キレート剤として知られるが、この発見はケイ素と生物の関わりにおける新たな可能性を示唆する。今後の研究で、この結合が植物のケイ素利用にどう関わるのか、解明が期待される。

 

植物が利用しやすいシリカはどこにある?

/** Geminiが自動生成した概要 **/
台風によるイネの倒伏被害を抑えるには、ケイ酸の吸収促進が有効である。イネはケイ酸を吸収し、細胞壁に蓄積することで茎葉を強化する。しかし、ケイ酸は土壌中で不溶化しやすく、吸収されにくい形態も多い。そこで、ケイ酸資材を施用することで吸収可能なケイ酸量を増やし、倒伏抵抗性を高める。さらに、ケイ酸吸収を促進する遺伝子の研究も進められており、品種改良による解決も期待されている。これらの取り組みによって、台風被害の軽減と安定した収穫量の確保を目指している。

 

珪藻はガラスの殻に包まれる

/** Geminiが自動生成した概要 **/
植物が利用できるシリカは、土壌中に溶解したモノケイ酸の形で存在するが、その濃度は低く、pHや他のイオンの存在に影響を受ける。植物は根からモノケイ酸を吸収し、篩管を通して葉や茎などに輸送する。シリカは植物の成長を促進し、病害虫や環境ストレスへの耐性を高める役割を果たす。土壌中のシリカは、岩石の風化や微生物の活動によって供給される。植物は土壌中のシリカ濃度が低い場合、根から有機酸を分泌して岩石を溶解し、シリカを可給化することもある。さらに、植物根に共生する菌根菌は、シリカの吸収を助ける役割を持つ。

 

Go言語でSearch Consoleの値を取得してみる

/** Geminiが自動生成した概要 **/
Go言語でGoogle Search Console APIから検索クエリデータを取得する方法を解説しています。必要な手順として、Google Cloud ConsoleでSearch Console APIを有効化し、認証情報を作成、Search Console側でユーザー権限を設定します。Goのコードでは、`golang.org/x/oauth2`、`google.golang.org/api/webmasters/v3`ライブラリを使用し、認証情報`secret.json`を用いてSearch Console APIにクエリを送信、過去7日間の検索クエリデータを取得・表示します。

 

植物はカルシウムを使って体を丈夫にする

/** Geminiが自動生成した概要 **/
植物は細胞壁の強化にカルシウムを利用するが、イネ科植物はカルシウム含量が低い。これは、ケイ素を利用して強度を確保しているためと考えられる。細胞壁はセルロース、ヘミセルロース、ペクチン、リグニンで構成され、ペクチン中のホモガラクツロナンはカルシウムイオンと結合しゲル化することで、繊維同士を繋ぎ強度を高める。しかし、イネ科植物はケイ素を吸収し、細胞壁に沈着させることで強度を高めているため、カルシウムへの依存度が低い。この特性は、カルシウム過剰土壌で緑肥として利用する際に有利となる。

 

石山寺硅灰石

/** Geminiが自動生成した概要 **/
石山寺は源氏物語ゆかりの寺であると同時に、国指定天然記念物の珪灰石で有名です。珪灰石は石灰岩が花崗岩マグマの熱変成を受けて生成される接触変成岩の一種で、石灰岩の成分である方解石とマグマ中の珪酸が反応してできたカルシウム珪酸塩鉱物です。奈良県洞川温泉の五代松鍾乳洞周辺で見られるスカルン鉱床と生成プロセスが類似しています。石山寺境内には珪灰石だけでなく、大理石も存在し、境内を登る過程で変成岩の境界を観察できる可能性があります。石山寺周辺の地質は複雑に変形した付加体やチャートで構成されています。

 

二価鉄を求めて-後編

/** Geminiが自動生成した概要 **/
この記事は、鉱泉に含まれる二価鉄の起源を探る後編です。前編では山の岩石が水質に影響を与えていることを示唆し、後編では岩石の中でも特にかんらん石に着目しています。かんらん石は鉄やマグネシウムを含む有色鉱物で、苦土やケイ酸の供給源となるだけでなく、二価鉄(Fe2+)を含む(Mg,Fe)2SO4という化学組成を持ちます。かんらん石は玄武岩に含まれ、風化しやすい性質のため、玄武岩質の山の川はかんらん石の影響を受け、二価鉄を含む水質になると考えられます。実際に、含鉄(Ⅱ)の鉱泉の上流は玄武岩質であることが地質図から確認できます。最後に、この考察に基づき、各地の調査結果を次回報告するとしています。

 

米の美味しさの鍵は糊化

/** Geminiが自動生成した概要 **/
米の美味しさの鍵は、炊飯時の糊化、特にデンプンの断片化にあります。 白米の浸水時に胚乳にクラック(ひび割れ)が生じ、そこから水が浸入し糊化が始まります。クラックが多いほど糊化が進み、甘みが増すと考えられます。 美味しさはクラックの発生しやすさだけでなく、クラック後にアミラーゼがどれだけ活発に働くか、つまり胚乳内に含まれるアミラーゼの量に依存します。アミラーゼはタンパク質なので、胚乳形成時にどれだけアミノ酸が分配されたかが重要です。アミノ酸の種類によっては吸水力に影響し、クラックの発生や炊き上がり後のご飯粒が立つ現象にも関与している可能性があります。 ultimately、光合成を促進しアミノ酸合成を活発にする健全な栽培が美味しい米作りに繋がります。

 

京都府の石、桜石

/** Geminiが自動生成した概要 **/
京都府亀岡市にある桜石は、菫青石の仮晶で、都道府県の石に指定されている。泥質岩にマグマが貫入し、熱変成作用を受けてホルンフェルス化した際に再結晶した鉱物である。六角短柱状で、容易に割れる断面には花弁状の模様が現れることから「桜石」と呼ばれる。産地の積善寺・桜天満宮付近は付加体であり、周辺の山地には花崗岩が分布する。桜石の形成はマグマの熱変成作用と関連し、近隣に存在するラドン温泉の熱源も深成岩中の放射性鉱物の崩壊熱と推測される。

 

黒ボク土の活性アルミナ対策としてのリン酸施肥

/** Geminiが自動生成した概要 **/
苦土(マグネシウム)は植物の生育に必須で、葉緑素の構成要素やリン酸吸収を助ける役割を持つ。土壌中の苦土は、粘土鉱物や腐植に吸着された交換性苦土として存在し、植物はこれを利用する。しかし、火山灰土壌では交換性苦土が少なく、リン酸過剰やカリウム過剰によって苦土欠乏症が発生しやすい。土壌分析で交換性苦土が1.5cmol/kg以下なら欠乏の注意が必要。対策として、苦土肥料の施用が有効だが、土壌pHや他の養分とのバランスも考慮する必要がある。特に、リン酸とカリウムは苦土の吸収を阻害するため、過剰施用は避けるべき。苦土欠乏は葉脈間が黄化するなどの症状で現れるため、早期発見と適切な対応が重要。

 

植物由来のケイ酸塩鉱物、プラント・オパール

/** Geminiが自動生成した概要 **/
イネ科植物は土壌から吸収したシリカを体内に蓄積し、強度を高める。枯死後、このシリカはプラント・オパールというケイ酸塩鉱物として土壌中に残る。プラント・オパールは土壌の団粒構造形成に重要な役割を果たすと考えられている。特にソルゴーは緑肥として有効で、強靭な根で土壌を破砕し、アルミニウム耐性により根から有機酸を分泌してアルミニウムを無害化する。枯死後はプラント・オパールとなり、活性化したアルミニウムを包み込み、団粒構造形成を促進する可能性がある。

 

イネがシリカを吸収すると

/** Geminiが自動生成した概要 **/
イネのシリカ吸収は、倒伏防止、害虫忌避、病害耐性向上、リン酸吸収効率化、受光態勢改善など多くの利点をもたらす。ケイ酸はイネの組織を強化し、光合成を促進する。玄武岩質地質でも良質な米が収穫されることから、植物が吸収する「シリカ」は二酸化ケイ素ではなく、かんらん石等の可能性が示唆される。肥料としてシリカを与える場合は、グリーンタフ由来の粘土鉱物が有効。グリーンタフは火山灰が堆積したもので、モンモリロナイトなどの粘土鉱物を豊富に含む。

 

植物はどのようにしてシリカを吸収するか?

/** Geminiが自動生成した概要 **/
植物は土壌中からケイ酸を吸収し、強度を高める。吸収の形態はSi(OH)4で、これはオルトケイ酸(H4SiO4)が溶解した形である。オルトケイ酸はかんらん石などの鉱物に含まれ、苦鉄質地質の地域ではイネの倒伏が少ない事例と関連付けられる。一方、二酸化ケイ素(シリカ)の溶解による吸収は限定的と考えられる。ケイ酸塩からの吸収は、酸による反応が推測されるが、詳細は不明。可溶性ケイ酸はアルミニウム障害も軽減する効果を持つ。つまり、イネのケイ酸吸収は、土壌中の鉱物組成、特にかんらん石の存在と関連し、可溶性ケイ酸の形で吸収されることで、植物の強度向上に寄与する。

 

植物が利用できるシリカはどこにある?

/** Geminiが自動生成した概要 **/
あそこの畑がカリ不足している理由を、土壌中のカリウムの形態に着目して解説している。日本の土壌はカリウム含有量が多いと言われるが、それはカリ長石などの形で存在しており、植物が直接利用できる形態ではない。植物が利用できるのは土壌溶液中のカリウムイオンだが、その量は土壌全体の数%に過ぎない。土壌溶液中のカリウムイオンが不足すると、植物はカリウム欠乏症を起こし、収量低下や品質劣化につながる。したがって、土壌中のカリウム総量ではなく、実際に植物が利用できる形態のカリウム量を把握することが重要である。

 

台風でも倒伏しないイネ

/** Geminiが自動生成した概要 **/
長野県栄村小滝集落では、特別な農法により高品質な米が栽培され、台風による倒伏被害もほとんど見られなかった。倒伏した一部の水田と健全な水田の違いは、赤い粘土の客土の有無であった。イネの倒伏耐性向上に有効とされるシリカに着目すると、赤い粘土に含まれる頑火輝石やかんらん石などの鉱物がケイ酸供給源となる可能性がある。これらの鉱物は玄武岩質岩石に多く含まれ、二価鉄やマグネシウムも豊富に含むため、光合成促進にも寄与すると考えられる。赤い粘土に含まれる成分が、米の品質向上と倒伏耐性の鍵を握っていると考えられるため、イネとシリカの関係性について更なる調査が必要である。ただし、玄武岩質土壌はカリウムが少なく、鉄吸収が阻害されると秋落ちが発生しやすい点に注意が必要。

 

飲食店内の壁土を見て

/** Geminiが自動生成した概要 **/
肥料の原料調査から石への興味が湧き、建築資材としての石、特に壁土に着目した筆者は、飲食店の壁土に小石を見つける。過去に建築家から、珪藻土の壁は湿気を吸放出するため、調理の多い店舗で木材の劣化を防ぐのに有効だと教わった経験を記す。珪藻土は藻類の死骸が堆積した二酸化ケイ素で、石材の主要成分でもある。筆者は石材への関心を深め、グリーンタフや火山灰土、シリカゲルなどの関連情報にも触れている。

 

シリカゲルに水をかけてみた

/** Geminiが自動生成した概要 **/
シリカゲルの吸水速度を検証するため、水をかけてみたところ、破裂音がして球体が割れた。急激な吸水と膨張が原因と考えられる。吸水量の指標となる青色の変色も見られず、飽和後も吸水を続けるシリカゲルの特性が示された。通常使用では水浸しにならない限りこのような事態は起こらないが、徐々に劣化していく可能性が示唆された。

 

シリカゲルが水を捕まえる

/** Geminiが自動生成した概要 **/
お菓子の袋の乾燥剤、シリカゲル(SiO₂・nH₂O)の吸水性の秘密を探る。シリカゲルはメタケイ酸ナトリウムの加水分解で生成され、二酸化ケイ素の微粒子が網目状の微細な孔を形成し、そこに水蒸気を吸着する。吸着には化学的吸着と物理的吸着があり、化学的吸着はシラノール基(-Si-OH)が水を静電気的に吸着する。珪藻土も同様の構造で吸水性を持ち、建材にも利用される。石英にも同様の性質があるか疑問が残る。

 

岩石が教えてくれる

/** Geminiが自動生成した概要 **/
岩石の種類が土壌の性質に大きく影響する。真砂土の母岩である花崗岩は酸性岩でシリカが多く、有機物が蓄積しにくい。関東ローム層とは異なり、関西の内陸部など花崗岩地帯では、土壌改良に工夫が必要となる。有機物を単純に投入しても効果が薄く、保肥力向上には母岩の性質を理解した対策が重要。このため、関東で研修を受けた人が関西で土壌に苦戦する一方、関西で研修を受けた人は関東で容易に適応できるという現象が生じる。岩石を知ることで、地域による土壌の違いへの理解が深まる。

 

タネはいつまで眠れるの?

/** Geminiが自動生成した概要 **/
アサガオの種は翌年以降も発芽する。これは種が生きているのではなく、生命活動を停止した状態で、発芽の条件が揃うと蘇生する仕組みを持つためだ。乾燥により酵素の働きを止め、DNAも分解された状態にすることで長期保存が可能となる。吸水すると修復酵素がDNAを復元し、発芽に至る。種は時限装置付きの仮死状態と言える。しかし、土中の水分に触れても発芽時期まで吸水を抑制する仕組みや、種子孔が開くメカニズムなど、未解明な点も多い。


Powered by SOY CMS   ↑トップへ