/** Geminiが自動生成した概要 **/
沖縄の土壌改良、特に国頭マージについて考える。国頭マージは酸性が強く、カオリナイトを多く含むため土が固く、有機物が定着しにくい。さらに微量要素も不足しがちである。これらの特徴から、家畜糞を土壌改良材として使う場合、負の影響が懸念される。具体的には、家畜糞に含まれるリン酸が土壌中で過剰に蓄積され、リン酸過剰を引き起こす可能性がある。リン酸過剰は作物の生育阻害や環境問題を引き起こす可能性があるため、国頭マージでの家畜糞の使用は慎重に検討する必要がある。
カテゴリー : 土壌環境/page-2
国頭マージの土壌改良を考える
石灰過剰の土で生育できる作物はあるか?
/** Geminiが自動生成した概要 **/
沖縄の石灰過剰土壌の改善策として、耐性のある作物の活用が現実的です。特に、ムギネ酸を分泌して鉄分吸収を助けるイネ科植物(サトウキビなど)が有効です。イネ科植物は根の構造も土壌改良に適しています。客土と並行してイネ科緑肥を育て、有機物を補給することで土壌が改善される可能性があります。さらに、耐塩性イネ科緑肥と海水の活用も考えられます。物理性を高めた土壌で海水栽培を実現できれば、画期的な解決策となるでしょう。
石灰過剰問題に対して海水を活用できるか?
/** Geminiが自動生成した概要 **/
沖縄の土壌問題は、石灰過剰が深刻です。これを海水で解決できるか?海水にはマグネシウムやカリウムなど、土壌に必要な成分も含まれています。特にマグネシウムは石灰過剰土壌に不足しがちなので有効です。海水から塩化ナトリウムだけを除去できれば、土壌改善に役立つ可能性があります。しかし、現状ではその技術は確立されていません。現在研究が進んでいるのは、逆浸透膜と電気透析を組み合わせ、海水から水酸化マグネシウムを抽出する方法です。コスト面などを考慮しながら、実用化が期待されます。
沖縄本島で入手できる有機物を考える
/** Geminiが自動生成した概要 **/
黒糖の色は、ショ糖精製過程で除去される糖蜜に由来します。糖蜜には、フェノール化合物やフラボノイドなどの褐色色素が含まれており、これが黒糖特有の色と香りのもととなっています。これらの色素は、抗酸化作用や抗炎症作用など、健康への良い影響も報告されています。つまり、黒糖の黒色成分は土壌改良に直接関与するものではなく、ショ糖精製の副産物である糖蜜の色素に由来するものです。
ジャーガルとサトウキビ
/** Geminiが自動生成した概要 **/
沖縄本島北部にある玄武岩地帯から、土壌改良に有効なモンモリロナイトが得られるのではないかと考え、調査しました。その結果、沖縄本島中南部の丘陵地に分布する「ジャーガル」という土壌にモンモリロナイトが豊富に含まれていることがわかりました。ジャーガルは排水性が悪いものの、サトウキビ栽培に適した栄養豊富な土壌です。今回の調査では、玄武岩地帯との関連は見られませんでしたが、土壌有機物の蓄積対策として、ジャーガルが有効である可能性が示されました。
沖縄の土を地質と合わせて確認してみる
/** Geminiが自動生成した概要 **/
この記事は、沖縄の土壌と地質の関係を考察しています。まず、沖縄本島南部を例に、土壌図と地質図を比較しました。土壌図では未熟土が多いのに対し、地質図では石灰岩の分布は予想より狭く、未熟土の成因に疑問が生じました。そこで土壌図を拡大したところ、石灰岩地域は石灰性暗赤色土、それ以外は低地土やグライ土と分類されていました。つまり、石灰岩以外の付加体が未熟土の基盤となっている可能性があります。結論として、沖縄本島では石灰岩の影響は限定的で、未熟土の成因には他の要因も考えられると示唆しました。
沖縄の土を日本土壌インベントリーで確認してみる
/** Geminiが自動生成した概要 **/
沖縄の土壌は、北部・中部では赤黄色土、南部では未熟土が分布しています。赤黄色土は風化が進み、植物の生育に必要な栄養分が少ない土壌です。元は未熟土でしたが、風化によって赤黄色土になったと考えられます。未熟土は、赤黄色土よりも風化が進んでいない土壌です。沖縄の土壌の多くは、風化が進んだ状態であることが分かります。
沖縄の土を考える
/** Geminiが自動生成した概要 **/
沖縄の土壌改良について、琉球石灰岩由来の赤い土と、亜熱帯気候による有機質分解の速さ、多雨による風化の早さが土壌特性に影響を与えている点を指摘しています。特に、有機物の分解が速いため、暗赤色土の期間は短く、2:1型粘土鉱物は有機物の保護を受けられないため、1:1型粘土鉱物に変性してしまう点が、土壌改良を考える上で重要となります。
テントウムシ探し
/** Geminiが自動生成した概要 **/
テントウムシを探すため、アブラムシが集まる場所を探索しました。アブラムシは、牛糞を多用して不調になった畑のカラスノエンドウに特に多く見られました。畑に入らずに観察できるよう、道路までツルが伸びている場所を探し、そこで多数のアブラムシとテントウムシを発見しました。アブラムシの量がテントウムシを上回っており、作物の生育不良はアブラムシの大量発生が原因だと考えられます。関連して、家畜糞による土作りやリン酸施肥の問題点についても考察しました。
土壌の物理性が向上した所では緑肥の播種が難しくなるかも
/** Geminiが自動生成した概要 **/
土壌の物理性が向上すると、保水性と排水性が向上する一方、緑肥の発芽に影響が出ることがあります。記事中の事例では、土壌物理性の向上により土壌表面が乾燥しやすくなり、レンゲの発芽が悪くなった可能性が示唆されています。これは、物理性の向上に伴い、従来の緑肥の播種方法では種子が十分な水分を得られないためと考えられます。解決策としては、種子を踏み固める、播種時期を調整するなど、土壌条件に合わせた播種方法の調整が重要となります。
ベントナイトと落ち葉で草たちは活気付いて、環境は更に変わる
/** Geminiが自動生成した概要 **/
知人の花壇では、3年前からベントナイトと落ち葉を投入した区画と、そうでない区画で生育の違いが顕著に現れている。落ち葉区画は、冬場も草が生い茂り土壌が豊かになっている一方、そうでない区画は草も生えず、養分が蓄積されない状態だ。これは、畑でも同じことが言える。腐植を増やすことで、自然と土壌環境が向上し、肥料の過剰な投入を抑えられる。肥料高騰の折、環境負荷とコスト削減のためにも、土壌の腐植化は重要な視点と言えるだろう。
日本でゴマの栽培は可能なのか?
/** Geminiが自動生成した概要 **/
この記事は、日本でゴマの栽培が可能かどうかを考察しています。ゴマはアフリカ原産で、日本では縄文時代から利用されてきました。しかし、現在では99%が輸入に頼っています。ゴマは干ばつに強く、多雨を嫌うため、日本の気候では栽培が難しいと考えられています。特に、秋に収穫期を迎えること、梅雨と台風の時期が重なることが課題となっています。一方で、梅雨時期に播種し、台風前に収穫することで栽培が可能であることも指摘されています。しかし、そのためには土壌の物理性を向上させるなど、栽培条件を整える必要があります。結論としては、日本の気候ではゴマの栽培は容易ではありませんが、工夫次第で国産ゴマの生産は可能です。
昨今の社会問題に対して、大浦牛蒡の持つ可能性に期待するの続き
/** Geminiが自動生成した概要 **/
大浦牛蒡は太いため空洞ができやすくても品質に影響が出にくく、貯蔵性も高い。空洞の原因は収穫の遅れと、乾燥後の長雨による急激な成長である。深い作土層に腐植を定着させることで、乾燥状態を回避し空洞化を抑制できる。腐植は二酸化炭素を固定するため、環境問題にも貢献できる。大浦牛蒡は肥料、社会保険、環境問題など多岐にわたり可能性を秘めており、今後の社会において重要な作物となるだろう。
昨今の社会問題に対して、大浦牛蒡の持つ可能性に期待する
/** Geminiが自動生成した概要 **/
大浦牛蒡は、社会問題解決に貢献する可能性を秘めた野菜です。豊富な食物繊維とポリフェノールで生活習慣病予防に効果が期待できる上、肥料依存度が低く、土壌改良効果も高い。特に大浦牛蒡は、中心部に空洞ができても品質が落ちず、長期保存も可能。太い根は硬い土壌を破壊するため、土壌改良にも役立ちます。産直など、新たな販路開拓で、その真価をさらに発揮するでしょう。
今年はリン酸施肥について考えた一年であった
/** Geminiが自動生成した概要 **/
牛糞堆肥を施用すると、土壌中のリン酸濃度が上昇し、生育初期に生育が促進される一方、後々生育障害や病害発生のリスクが高まる可能性があります。具体的には、リン酸過剰による根の伸長阻害、微量要素の吸収阻害、土壌pHの上昇による病害発生などが挙げられます。これらの問題は、牛糞堆肥の投入量を減らし、化学肥料や堆肥の種類を組み合わせることで改善できる可能性があります。
ゴボウの連作障害の要因は何か?
/** Geminiが自動生成した概要 **/
ゴボウの普及を阻む要因として、土壌の物理性、機械化、連作障害が挙げられています。記事では、特に連作障害に着目し、その原因を探っています。行政のサイトによると、ゴボウの連作障害である「やけ病」は、糸状菌とネグサレセンチュウによって引き起こされ、土壌の物理性低下とリン酸過剰が原因の可能性が高いと指摘されています。つまり、適切な施肥設計によって連作障害は軽減できる可能性があり、ゴボウ普及の課題は機械化と新たなマーケティング戦略に絞られると結論付けています。さらに、ゴボウは社会問題解決の可能性を秘めた作物として、今後の動向に注目しています。
土の塊を多方向から攻める
/** Geminiが自動生成した概要 **/
荒起こし後の田んぼで、大きな土の塊があっても、植物の根はその塊の上や側面からも伸びていく様子が観察できます。通常、土深くに埋もれてしまう種子も、荒起こしによって地表に出て発芽するチャンスを得ます。そして、成長した植物の根が土塊を多方向から砕くことで、土壌の団粒化が促進されます。一見、荒起こしは土壌への負担が大きいと思われがちですが、植物の成長を促し、結果的に土壌改善に貢献している可能性があります。
米ぬか土壌還元消毒でどれ程の有機態リン酸が投入されるか?
/** Geminiが自動生成した概要 **/
米ぬか土壌還元消毒は有機態リン酸であるフィチン酸を大量に投入するため、土壌への影響が懸念されます。米ぬか1〜2トン/反の投入で、フィチン酸は85〜170kg/反も供給されます。これはトマトのリン酸施肥量の数倍に相当し、過剰なリン酸は亜鉛などの微量要素の吸収を阻害し、土壌劣化を招く可能性があります。特に土壌鉱物の劣化が進んだハウス栽培では深刻な問題となり得ます。有機態リン酸の蓄積と土壌鉱物の状態には注意が必要です。
土壌中の有機態リン酸の利用を促したい
/** Geminiが自動生成した概要 **/
土壌中の難分解性有機態リン酸であるフィチン酸が過剰に蓄積すると、植物はリン酸を吸収しにくくなる問題がある。解決策として、フィチン酸を分解するコウジカビなどの微生物の働きを活性化させる方法が有効だ。具体的には、腐植質を投入して土壌環境を改善し、ヒマワリなどの緑肥を栽培する。さらに、米ぬかなどのリン酸豊富な有機物施用時は、無機リン酸の施用を控えるべきである。
有機態リン酸ことフィチン酸の測定方法はあるのか?
/** Geminiが自動生成した概要 **/
土壌中の有機態リン酸であるフィチン酸は、過剰に蓄積すると植物の生育を阻害する可能性がある。しかし、既存の土壌分析では測定されていない。フィチン酸の測定は、食品分析の分野では吸光光度法やイオンクロマトグラフィーを用いて行われている。土壌中のフィチン酸測定には、アルミナ鉱物との結合を切る必要はあるものの、技術的には不可能ではない。にもかかわらず、土壌分析の項目に含まれていないのは、認識不足や需要の低さが原因と考えられる。
有機態リン酸の過剰蓄積についてを考える
/** Geminiが自動生成した概要 **/
土壌中のリン酸には、植物が利用しにくい有機態リン酸が存在します。特に、穀物や家畜糞に由来するフィチン酸は土壌に蓄積しやすく、問題を引き起こします。フィチン酸はキレート結合により土壌と強く結合し、植物が利用できません。さらに、亜鉛などの微量要素とも結合し、植物の生育を阻害します。また、既存の土壌分析ではフィチン酸は測定されないため、過剰蓄積に気づきにくいという問題もあります。米ぬか施用などでフィチン酸が蓄積する可能性があり、注意が必要です。
糸状菌が分泌するシュウ酸の役割
/** Geminiが自動生成した概要 **/
シロザは、収穫後に畑で繁茂する強害雑草です。高い繁殖力と成長速度を持ち、土壌の養分を奪い尽くすため、放置すると次作に悪影響を及ぼします。しかし、シロザは土壌中のリン酸を吸収しやすく、刈り取って土に混ぜることで緑肥として活用できます。さらに、シュウ酸を蓄積する性質があるため、土壌中の難溶性リン酸を可溶化し、他の植物が利用しやすい形に変える効果も期待できます。シロザは厄介な雑草としての一面だけでなく、土壌改良の潜在力も秘めているのです。
Al型リン酸の蓄積の問題に対してダイズの栽培はどうだろう?
/** Geminiが自動生成した概要 **/
土壌中の難溶性リン酸の蓄積対策として、ダイズ栽培に着目します。ダイズはラッカセイほどではないものの、Al型リン酸を吸収する能力があり、土壌pHが低いほど吸収量が増加します。また、ダイズは水はけと酸素供給の良い土壌を好むため、腐植質との相性が良く、リン酸吸収を促進する効果が期待できます。輸入ダイズに押される現状ですが、国内産ダイズの需要拡大も見据え、土壌改良と収益化の可能性を探ることが重要です。
腐植は土壌中のリン酸の固定を防ぐ
/** Geminiが自動生成した概要 **/
腐植酸は土壌中のリン酸固定を抑制する効果があります。腐植酸はアルミニウムイオンと結合し、土壌からリン酸と結合しやすいアルミニウムを減らすためです。ラッカセイ栽培では、腐植と石灰を施用することで、リン酸の有効性を高め、ラッカセイのポテンシャルを引き出す可能性があります。
シュウ酸から続く無農薬栽培への道
/** Geminiが自動生成した概要 **/
この記事は、無農薬栽培の可能性を探るため、シュウ酸アルミニウムの抗菌作用に着目しています。アカマツの菌根菌が生成するシュウ酸アルミニウムが抗菌作用を示すという報告から、植物の根からも分泌されるシュウ酸に着目し、そのメカニズムを探っています。シュウ酸アルミニウムは、土壌中でアルミニウムとキレート化合物を形成し、これが菌のコロニー先端部でグラム陰性細菌や枯草菌への抗菌作用を示すと考えられています。具体的な抗菌メカニズムは不明ですが、銅イオンと同様の作用の可能性が示唆されています。
リン酸値の改善の為のラッカセイ栽培で気をつけるべきところ
/** Geminiが自動生成した概要 **/
土壌分析でリン酸値が高い場合、Ca型リン酸が多く病気リスクも高まります。記事で紹介されたラッカセイはAl型リン酸を利用できるため、石灰過剰の土壌ではリン酸値改善効果は期待できません。石灰過剰だと土壌pHが上がり、ラッカセイがAl型リン酸を溶解しにくくなるからです。リン酸値改善には、まず石灰値の適正化が必要です。鶏糞など酸性資材の活用も検討しましょう。
レガシーPの利用を考える
/** Geminiが自動生成した概要 **/
土壌に蓄積したリン酸(レガシーP)は、植物にとって吸収しやすいCa型、稲作などで可溶化するFe型、微生物の働きで可溶化する有機態、そして可溶化が難しいAl型がある。Al型は火山灰土壌で深刻だが、低リン酸耐性作物のラッカセイ栽培が解決策となる可能性がある。ラッカセイは根から分泌される物質により、難溶性のリン酸を吸収しやすくする特徴を持つ。
稲作のリン酸肥料としてBMようりんについて触れておく
/** Geminiが自動生成した概要 **/
稲作では地力の向上が重要ですが、そのためには土壌生物の栄養不足を解消する必要があります。土壌生物は植物が吸収できない形態の栄養分を分解し、吸収可能な形に変える役割を担っています。土壌中の有機物が不足すると土壌生物の栄養が不足し、結果として植物の生育にも悪影響が出ます。BMようりんはリン酸だけでなく、微量要素やケイ酸も含むため、土壌改良材としての役割も果たします。腐植と併用することで土壌の物理性・化学性が向上し、土壌生物の活性化、ひいては地力向上につながります。
畑作の輪作の稲作ではリン酸はどのようにして減っていくのか?
/** Geminiが自動生成した概要 **/
畑作後に水田を作ると、リン酸が減少する理由は、水田の還元環境にあります。通常、土壌中のリン酸は鉄と結合し、水に溶けにくいFePO₄の形で存在します。しかし、水田の酸素が少ない環境では、鉄が還元されFe²⁺となるため、リン酸との結合が弱まり、水に溶けやすい形に変化します。また、カルシウムと結合したリン酸も比較的溶けやすく、水田環境では自然と減少します。これらの要素が重なり、畑作後の水田でリン酸が減少すると考えられています。
土壌分析でカリウムの測定はどのようにして行う?
/** Geminiが自動生成した概要 **/
土壌分析におけるカリウム測定は、炎光光度法という方法が用いられます。まず土壌から不純物を除去した溶液を作成し、そこにガス炎を当てます。カリウムは炎色反応によって淡紫色の炎を発し、その炎の波長を炎光光度計で測定します。炎光光度計は、炎の光を電気信号に変換することで、カリウム濃度を数値化します。このように、炎色反応を利用することで、土壌中のカリウム量を正確に測定することができます。
コメとダイズの組み合わせ必須アミノ酸を摂取
/** Geminiが自動生成した概要 **/
日本は、コメとダイズを組み合わせることで必須アミノ酸を効率的に摂取できる食文化を持つ。これは、コメに少ないリジンをダイズが、ダイズに少ないメチオニンをコメが補完するためである。さらに、この組み合わせは鉄や亜鉛の摂取にも貢献する。また、稲作は低肥料で、ダイズ栽培にも適した土壌を作るため、持続可能な食料生産にも適している。肥料不足が深刻化する中、日本古来の稲作文化の重要性が見直されている。
田の抑草効果のある膨軟層の形成にイトミミズが関与する
/** Geminiが自動生成した概要 **/
イトミミズは、水田の土壌中に生息するミミズの一種で、有機物を分解し、土壌を肥沃にする役割を担っています。鳥取県の研究によると、イトミミズが形成する「膨軟層」には、コナギなどの雑草の生育を抑制する効果があることが分かりました。イトミミズは、土壌中の有機物を分解することで、窒素などの栄養塩を供給し、イネの生育を促進します。しかし、過剰な有機物の供給は、イネの倒伏を招く可能性もあるため、注意が必要です。イトミミズの抑草効果を最大限に活用するためには、イトミミズの生態や食性を詳しく調査し、最適な水管理や施肥管理を行う必要があります。
田の酸化還元電位
/** Geminiが自動生成した概要 **/
水田では、酸素不足のため土壌が還元状態になりやすく、硫化水素が発生しやすくなります。土壌中の物質は、還元されやすい順に、硝酸イオン、マンガン、鉄、硫酸イオン、二酸化炭素と還元されます。鉄は硫酸イオンより還元されやすいので、鉄が存在すれば硫化水素の発生は抑えられます。つまり、土壌に鉄を供給したり、鉄の酸化還元をコントロールすることが重要になります。土壌の物理性を改善することで、硫化水素やメタンの発生を抑制できる可能性があり、そのメカニズムについて、今後の記事で解説していく予定です。
BB肥料を使う時は被覆材に気をつけた方が良い
/** Geminiが自動生成した概要 **/
ネギの連作障害対策で注目すべきは、BB肥料(特に硫黄コーティング肥料)の多用です。硫黄コーティング肥料は、土壌中で硫酸イオンを生成し、過剰になると硫化水素が発生、土壌を老朽化させます。これは水田だけでなく畑作でも深刻な問題で、鉄分の無効化など作物生育に悪影響を及ぼします。硫酸イオンの残留性は高いため、BB肥料の使用は土壌の状態を見極め、過剰な使用は避けるべきです。
ネギ作の間の稲作では老朽化水田化に気をつけろ
/** Geminiが自動生成した概要 **/
ネギの連作障害解消のために稲作を挟む方法の効果が疑問視されています。原因は、家畜糞の多用などで土壌が老朽化し、ガス発生が問題となっている可能性があります。解決策として、稲作前に腐葉土を鋤き込み、土壌の物理性を改善することが有効と考えられます。物理性改善は稲作中でも可能であり、土壌環境の改善に役立ちます。ただし、稲作に悪影響が出ないように、時期に注意する必要があります。
ネギ作の間に稲作でネギの秀品率を上げるつもりが…
/** Geminiが自動生成した概要 **/
ネギの周年栽培地帯で、生育不良対策に稲作を挟む慣行がある。これは過剰なリンや石灰を流すためだが、近年効果が薄れている。原因は養分の流亡不足か、稲作による土壌物理性悪化が考えられる。効果があった過去を考えると、前者の可能性が高い。特に、稲作の中干しと硫化水素の関係から、養分が土壌に残留しやすくなっている可能性があり、土壌物理性の改善が対策として有効と考えられる。
稲作で深植えの方が倒伏しなかったのは何故か?
/** Geminiが自動生成した概要 **/
レンゲ米栽培の田んぼで、深植えした稲が倒伏せず、浅植えした方が倒伏した事例について。一般的に深植えは徒長しやすく倒伏しやすいと考えられているが、今回の田んぼでは土壌の物理性が向上していたため、初期生育が遅くなり、徒長が抑えられたと考えられる。つまり、物理性の向上により、従来の常識とは異なる結果が得られた。筆者は、物理性の向上によって、熟練者でなくても容易に栽培が可能になり、大規模化にも対応できると考えている。
赤トンボを探しに収穫後の田んぼへ
/** Geminiが自動生成した概要 **/
赤トンボ(アキアカネ)は収穫後の田んぼの水たまりに産卵しますが、観察ではキャタピラで踏み固められた場所に産卵しており、乾燥が心配です。アキアカネは卵で越冬するため、水たまりが短期間で乾くことは問題ありません。しかし、土壌の保水性が向上すれば、より長く水たまりが維持され、アキアカネの産卵環境の改善に繋がる可能性があります。稲作中の土壌管理は、収穫量増加だけでなく、生物多様性にも貢献する可能性を秘めています。
今年も観測していたレンゲ米栽培の田が無事に収穫を迎えたそうです2022
/** Geminiが自動生成した概要 **/
レンゲ米栽培の田で、今年も収穫を得ることができた。例年より収量が多い地域だったが、観測対象の田は減肥+追肥無しで増収、土壌物理性の向上の可能性を感じさせる結果となった。課題は、減肥加減の調整と、倒伏対策である。収穫直前の稲わらを見ると、まだ緑色が残っており、更なる減肥の可能性がある。一方で、浅植えの箇所が倒伏しており、機械収穫のロス削減のためにも、倒伏対策が急務である。来年はレンゲ栽培方法の変更も検討し、更なる改善を目指す。
連日の長雨による土砂が田に入り込みイネの生育が不調になる
/** Geminiが自動生成した概要 **/
連日の長雨で田んぼに土砂が流れ込むと、土質が変わり稲の生育に悪影響を及ぼすことがあります。土砂に含まれる成分によっては、養分過多や有害物質の影響が出ることも。対策としては、土壌の物理性を改善することが重要です。具体的には、植物性有機物を投入し、緑肥を栽培することで、土壌の保肥力と発根を促進し、土砂の影響を軽減できます。施肥だけで解決しようとせず、土壌改良を優先することが大切です。
稲作のごま葉枯病は土壌劣化に因るものだと考えるとしっくりくる
/** Geminiが自動生成した概要 **/
この地域で稲作にごま葉枯病が多発している原因は、土壌劣化によるカリウム、ケイ酸、マグネシウム、鉄などの要素の欠乏が考えられます。特に鉄欠乏は土壌の物理性悪化による根の酸素不足が原因となり、硫化水素発生による根腐れも懸念されます。慣行農法では土壌改善が行われないため、根本的な解決には土壌の物理性向上と、それに合わせた適切な施肥管理が必須です。経験的な対処法や欠乏症の穴埋め的な施肥では効果が期待できません。
土壌の物理性の向上に合わせた減肥は難しい
/** Geminiが自動生成した概要 **/
土壌の物理性を高めた田んぼで、減肥したにも関わらず、台風による稲の倒伏が発生。これは、土壌の地力や肥効が向上した結果、予想以上にイネが成長したためと考えられます。特に、手植え区では株間が広いため、穂重が増加した可能性があります。一方、機械植え区では倒伏が見られなかったことから、株間と風通しの関係も示唆されます。今回の結果から、土壌改良後の施肥設計は難しい課題であることが浮き彫りになりました。今後は、さらなる減肥や株間調整など、対策が必要となります。
台風対策とESG
/** Geminiが自動生成した概要 **/
「台風に負けない」という根性論的な農業発信は、ESG投資が注目される現代においては効果が薄い。台風被害軽減と温室効果ガス削減を結びつけ、「土壌改良による品質向上と環境貢献」をアピールすべき。農業はIR活動の宝庫であり、サプライチェーン全体のCO2排出量削減は企業の利益にも繋がる。土壌環境向上はCO2削減に大きく貢献するため、農業のESG投資価値は高い。
稲作を理解するために赤トンボを学びたい2
/** Geminiが自動生成した概要 **/
昔は田んぼで産卵していたアキアカネですが、最近はプールなどでも見られるようになっています。これは、近年の稲作の変化が関係していると考えられます。コンバインを使うため収穫前に田んぼを乾かすこと、土作りがされていないため雨が降っても固い土壌になってしまうこと、藁の腐熟のために石灰窒素が使われること、冬に田起こしが行われることなど、アキアカネの産卵やヤゴの生育にとって厳しい環境になっている可能性があります。アキアカネは、変化した環境に適応しようと、田んぼ以外の水場も利用するようになっているのかもしれません。
今年は稲作で追肥をしている方をよく見かけるの続き
/** Geminiが自動生成した概要 **/
カリ肥料の高騰を受け、代替として塩化カリウムや硫酸カリウムの施肥量を増やす動きがある。しかし、土壌への影響を考えると安易な使用は危険である。土壌中のカリウムは交換性カリウムとして存在し、植物に吸収されるが、塩化物イオンは土壌に残留し、物理性を悪化させる可能性がある。特に、水稲栽培では塩類集積による生育障害のリスクが高まるため注意が必要だ。塩化カリウムの使用量については、土壌分析に基づいた判断が重要となる。
今年は稲作で追肥をしている方をよく見かける
/** Geminiが自動生成した概要 **/
肥料高騰の中、今年は稲作で追肥が必要な状況が目立つ。著者の地域では、一発肥料の設計が一般的だが、土壌劣化や猛暑の影響で肥料吸収がうまくいっていない可能性がある。実際、土壌改良を行い一発肥料を減らした田んぼでは、追肥が必要な状態になっていない。一方、肥料が多すぎる田んぼは病害リスクも高まる。肥料を効率的に吸収させるには、土壌環境の改善が重要と考えられる。
師から教わったサツマイモの栽培
/** Geminiが自動生成した概要 **/
レタス収穫後の畝をそのまま活用し、マルチも剥がさずにサツマイモを栽培すると高品質なものができるという話。レタスは肥料が少なくても育ち、梅雨前に収穫が終わるため、肥料をあまり必要とせず、梅雨時の植え付けに適したサツマイモとの相性は抜群。疑問点は、カリウム豊富とされるサツマイモが、肥料を抑えた場合どこからカリウムを得るのかということ。著者は、レタスが土壌中のカリウムを吸収しやすい形に変えているのではないかと推測。レタスの原種であるトゲチシャは、舗装道路の隙間でも育つほど土壌の金属系養分を吸収する力が強いと考えられるため。
夏の風物詩の枝豆の続き
/** Geminiが自動生成した概要 **/
枝豆はダイズよりもカリウムやカロテノイドを多く含み、土壌からの養分持ち出しが多い可能性がある。ダイズ栽培では土壌の物理性を高めるためサブソイラがよく使われるが、金属系養分の損失が懸念される。特に家畜糞による土作りは金属系要素の酸化を加速させ、土壌劣化につながる可能性がある。枝豆は栄養価が高く、猛暑日が増える中で重要な食材となる可能性がある一方、土壌劣化による品質低下が懸念される。持続可能な枝豆栽培には、土壌への負荷を軽減する対策が不可欠である。
飼料用トウモロコシの栽培の話題で思うこと
/** Geminiが自動生成した概要 **/
この記事は、飼料用トウモロコシ栽培における家畜糞利用の長期的なリスクを論じています。筆者は、家畜糞の多用は初期には土壌を豊かにする一方、10年程でマンガン欠乏を引き起こし、収量低下を招くと指摘します。原因は、糞中の硝酸態窒素による土壌酸化の影響です。解決策として、稲作による土壌洗浄を提案します。水田への入水は、過剰な硝酸態窒素の除去と微量要素の供給を促し、土壌環境を改善します。このように、伝統的な稲作と組み合わせることで、持続可能な飼料用トウモロコシ栽培が可能になると結論づけています。
早く訪れた猛暑日は稲作にどれ程影響するか?
/** Geminiが自動生成した概要 **/
今年の猛暑日は早く訪れ、中干し中の稲に高温障害をもたらしている可能性があります。中干し中に猛暑日が重なると、土壌の乾燥とひび割れが起き、根にダメージを与えてしまうからです。根が傷むとカリウムやマグネシウム、亜鉛の吸収量が減り、稲は養分を葉から他の部位へ転流させようとします。これが、葉の脱色や養分転流の活発化という形で現れます。根へのダメージは収穫量や病虫害抵抗性にも影響するため、猛暑と中干しの関係には注意が必要です。