ブログ内検索

micro:bitページ
とにかく速いブログサイトを目指す
検索キーワード:「緑肥」
 

1月のカラスノエンドウらしき草や目立つ

/** Geminiが自動生成した概要 **/
ヘアリーベッチ米栽培は、化学肥料や農薬を減らし、持続可能な農業を目指す取り組みです。ヘアリーベッチはマメ科植物で、空気中の窒素を土壌に固定する能力があり、緑肥として利用することで化学肥料の使用量を削減できます。また、雑草抑制効果も期待できます。しかし、ヘアリーベッチの栽培には課題も存在します。種子が高価であること、低温に弱く、播種時期が限られること、過繁茂による倒伏のリスクなどが挙げられます。これらの課題を克服し、ヘアリーベッチを効果的に活用することで、環境負荷の少ない米作りが可能となります。カラスノエンドウのような近縁種も緑肥としての活用が期待されますが、ヘアリーベッチと同様に課題の克服が重要です。

 

EFポリマーは令和の肥料革命になるかもしれない

/** Geminiが自動生成した概要 **/
EFポリマーは食品残渣由来の土壌改良材で、高い保水性を持ち、砂地や塩類集積土壌に有効。吸水すると粒状になり、堆肥と混ぜると保水性を高める。更に、重粘土質の土壌に添加すると団粒構造を形成し、通気性・通水性を向上させる効果も確認された。植物繊維が主原料のため、土壌微生物により分解されるが、腐植と併用することで団粒構造への取り込みが期待される。緑肥播種前の施肥も有効。二酸化炭素埋没効果も期待できる、画期的な土壌改良材。

 

なんでこんなところにケツメイシ?

/** Geminiが自動生成した概要 **/
土手で見慣れない植物を見つけ、観察した結果、エビスグサ(別名:決明子)であると推測しています。 特徴的な小葉、マメ科ジャケツイバラ亜科のような花、そして花から伸びる独特の莢からエビスグサだと判断しました。 なぜ自生しているのか疑問に思い、漢方薬としてだけでなく緑肥としても有名であることから、過去に緑肥として利用されていたもののこぼれ種ではないかと推測しています。

 

コーヒー抽出残渣を植物に与えたら?の続き

/** Geminiが自動生成した概要 **/
コーヒー抽出残渣の施肥が1年目は植物の生育を抑制し、2年目は促進するのは、土壌微生物がカフェインを分解するためと考えられる。このカフェインは、植物の成長に抑制効果を及ぼす可能性がある。 カフェインの障害には、細胞内のカルシウム濃度調整の異常と細胞分裂の阻害が含まれる。 土壌消毒は、カフェインを分解する土壌微生物を減少させ、地力窒素の減少につながる可能性がある。したがって、土壌消毒を行う場合は、地力窒素の損失を考慮する必要がある。

 

コーヒー抽出残渣を植物に与えたら?

/** Geminiが自動生成した概要 **/
コーヒーかすに含まれるカフェインは、植物の生育を抑制する可能性があります。しかし、分解されると土壌を改善し、植物の成長を促進します。また、コーヒーかすにはクロロゲン酸というポリフェノールが含まれており、病気を抑制する効果があるとされています。2年目以降、クロロゲン酸はタンニンと反応するため、抑制的な効果が軽減されます。カフェインは植物にアデノシン受容体様の構造が存在しないため、動物に見られるような覚醒作用はありません。

 

シロクローバの葉に蓄積する色素

/** Geminiが自動生成した概要 **/
シロツメクサの園芸種の葉の模様は、アントシアニンの一種と考えられます。葉によって色素の蓄積の仕方が異なり、暑さ対策のための遮光効果の可能性があります。 筆者は、この葉を緑肥として利用したら、含まれるアントシアニンが土壌に良い影響を与えるのではないかと考えています。 レンゲの葉でも同様の現象が見られ、タンニンのタンパク質凝集モデルと関連付けて考察しています。 シロツメクサが緑肥としてどの程度繁茂するかは不明ですが、新たな土壌改良の可能性を秘めていると言えるでしょう。

 

シニグリンとアリルイソチオシアネート

/** Geminiが自動生成した概要 **/
緑肥カラシナに含まれるシニグリンは、土壌中でアリルイソチオシアネート(AITC)に変換されます。AITCは水と反応し、最終的に硫化水素(H2S)を生成します。硫化水素は土壌に悪影響を与える可能性があるため、緑肥カラシナを輪作で栽培する際には注意が必要です。土壌改良材の使用など、適切な対策を講じることで、硫化水素による悪影響を軽減できる可能性があります。

 

メチルイソチオシアネートは土壌中でどのように変化するか?

/** Geminiが自動生成した概要 **/
最近の肥料に記載される「酸化還元電位」は、土壌中の物質が電子をやり取りするしやすさを示します。電位が高いほど酸化状態になりやすく、低いほど還元状態になりやすいです。酸素呼吸をする植物の根は、土壌を還元状態にするため、酸化還元電位の調整は重要です。窒素肥料は、土壌中で硝酸化成を経て硝酸態窒素になる際に、土壌を酸化させるため、酸化還元電位に影響を与えます。適切な酸化還元電位の管理は、植物の生育にとって重要です。

 

草たちが協力し合って成長しているのか?

/** Geminiが自動生成した概要 **/
田んぼでレンゲの播種むらにより、草の生育に差が出ている様子を観察しています。レンゲが密生している場所では、中心にイネ科の草が青々と育ち、レンゲに囲まれていない場所の同じ草は生育不良です。 まるでレンゲとイネ科の草が共存関係にあるように見えます。レンゲが良好な環境を作り出し、イネ科の草が恩恵を受けている可能性も考えられます。 この現象は、単なる肥料の撒きむらではなく、植物間の相互作用を示唆しているのかもしれません。

 

レンゲの葉が紫色の続き

/** Geminiが自動生成した概要 **/
レンゲを育てている田んぼでは、レンゲ以外の雑草も霜の影響を受けています。写真に写っている草は、霜に当たっているにも関わらず、レンゲのように紫色になっていません。これは、すべての植物が寒さに反応してアントシアニンを生成するわけではないことを示しています。レンゲは低い位置にあるため霜の影響を受けにくく、他の植物は霜に直接さらされて強い寒さストレスを受けています。

 

稲作でカドミウムの吸収を抑制する栽培方法

/** Geminiが自動生成した概要 **/
中干し無しの稲作は、土壌を湛水状態に保つことでカドミウムの溶解を抑え、稲への吸収を抑制する効果があります。これは、カドミウムを含むリン酸肥料を使用する場合でも、土壌の物理性と化学性を改善することでカドミウム蓄積を軽減できることを示唆しています。つまり、品質向上と環境保全、カドミウム蓄積抑制は、共通の土作りによって達成できる可能性があります。

 

カドミウム除去という観点の緑肥

/** Geminiが自動生成した概要 **/
イネに吸収されたカドミウムはメタロチオネインと結合し蓄積されます。土壌中のカドミウム除去には緑肥が有効です。特にヒマワリはカドミウム耐性と蓄積能力が高く、除去に最適です。ヒマワリはリン酸の可溶化も得意なので、土壌改良にも役立ちます。ただし、カドミウム除去目的の場合は土壌にすき込まず、有機物は堆肥で補う必要があります。

 

葉は大きければ良いというわけではなさそうだと書いたけど

/** Geminiが自動生成した概要 **/
イネ科とマメ科の緑肥を混播すると、それぞれの特性が補完し合い、単播よりも多くのメリットが得られます。マメ科は空気中の窒素を固定し、土壌を肥沃にする効果があり、イネ科は土壌の物理性を改善し、雑草抑制効果も期待できます。混播比率は、土壌条件や栽培目的によって調整する必要があります。両者の生育特性の違いを理解し、適切な管理を行うことで、より効果的な緑肥利用が可能になります。

 

リン酸過剰な土壌で腐植酸の施肥は有効か?

/** Geminiが自動生成した概要 **/
リン酸過剰な土壌に腐植酸を施用すると、土壌中の炭酸石灰とリン酸石灰を溶解し、植物が利用しやすい形に変えます。また、腐植酸はアルミニウムイオンと結合し、土壌中に留まりながらリン酸を可溶化します。さらに、腐植酸は団粒構造を促進し糸状菌を活性化、糸状菌が分泌するシュウ酸もリン酸の可溶化を助けます。そのため、腐植酸の施肥はリン酸過剰な土壌の改善に有効と考えられます。

 

砂利を敷き詰めたところでアレチヌスビトハギ

/** Geminiが自動生成した概要 **/
アレチヌスビトハギは砂利の痩せた土でも生育し、根粒菌がないと思われることから、栄養吸収に適応している。外来種であり、公園の砂利地に自然侵入したと推測される。国内では緑肥として利用されていないが、種子のひっつきむしによる拡散性が問題視されているため、緑肥には適さない。

 

イヌムギの成長は早いなと常々思う

/** Geminiが自動生成した概要 **/
イヌムギは、春になると急速に成長し、開花期を迎えます。この旺盛な生育力は、牧草に求められる特徴であり、緑肥としても適していると考えられます。実際、イヌムギは明治時代以前に牧草として日本に持ち込まれた外来種です。牧草は、畑作に不向きな土壌でも力強く育つため、その特性を活かした緑肥としても有効です。イヌムギの成長の早さは、緑肥としての可能性を感じさせます。

 

国頭マージという土とウマゴヤシ

/** Geminiが自動生成した概要 **/
沖縄・名護の土壌「国頭マージ」は、酸性で粘土質、保水性が高く栄養分が少ないため、サトウキビ栽培に適していません。そこで、生育旺盛なマメ科植物「ウマゴヤシ」を活用し、緑肥として土壌改良を試みています。ウマゴヤシは、空気中の窒素を土壌に固定する性質を持つため、有機物が蓄積しにくい国頭マージでも土壌改善効果が期待されています。

 

石灰過剰の土で生育できる作物はあるか?

/** Geminiが自動生成した概要 **/
沖縄の石灰過剰土壌の改善策として、耐性のある作物の活用が現実的です。特に、ムギネ酸を分泌して鉄分吸収を助けるイネ科植物(サトウキビなど)が有効です。 イネ科植物は根の構造も土壌改良に適しています。客土と並行してイネ科緑肥を育て、有機物を補給することで土壌が改善される可能性があります。 さらに、耐塩性イネ科緑肥と海水の活用も考えられます。物理性を高めた土壌で海水栽培を実現できれば、画期的な解決策となるでしょう。

 

土壌の物理性が向上した所では緑肥の播種が難しくなるかも

/** Geminiが自動生成した概要 **/
土壌の物理性が向上すると、保水性と排水性が向上する一方、緑肥の発芽に影響が出ることがあります。記事中の事例では、土壌物理性の向上により土壌表面が乾燥しやすくなり、レンゲの発芽が悪くなった可能性が示唆されています。これは、物理性の向上に伴い、従来の緑肥の播種方法では種子が十分な水分を得られないためと考えられます。解決策としては、種子を踏み固める、播種時期を調整するなど、土壌条件に合わせた播種方法の調整が重要となります。

 

土壌中の有機態リン酸の利用を促したい

/** Geminiが自動生成した概要 **/
土壌中の難分解性有機態リン酸であるフィチン酸が過剰に蓄積すると、植物はリン酸を吸収しにくくなる問題がある。解決策として、フィチン酸を分解するコウジカビなどの微生物の働きを活性化させる方法が有効だ。具体的には、腐植質を投入して土壌環境を改善し、ヒマワリなどの緑肥を栽培する。さらに、米ぬかなどのリン酸豊富な有機物施用時は、無機リン酸の施用を控えるべきである。

 

BB肥料を使う時は被覆材に気をつけた方が良い

/** Geminiが自動生成した概要 **/
ネギの連作障害対策で注目すべきは、BB肥料(特に硫黄コーティング肥料)の多用です。硫黄コーティング肥料は、土壌中で硫酸イオンを生成し、過剰になると硫化水素が発生、土壌を老朽化させます。これは水田だけでなく畑作でも深刻な問題で、鉄分の無効化など作物生育に悪影響を及ぼします。硫酸イオンの残留性は高いため、BB肥料の使用は土壌の状態を見極め、過剰な使用は避けるべきです。

 

連日の長雨による土砂が田に入り込みイネの生育が不調になる

/** Geminiが自動生成した概要 **/
連日の長雨で田んぼに土砂が流れ込むと、土質が変わり稲の生育に悪影響を及ぼすことがあります。土砂に含まれる成分によっては、養分過多や有害物質の影響が出ることも。対策としては、土壌の物理性を改善することが重要です。具体的には、植物性有機物を投入し、緑肥を栽培することで、土壌の保肥力と発根を促進し、土砂の影響を軽減できます。施肥だけで解決しようとせず、土壌改良を優先することが大切です。

 

コリンは生体内でどこにある?

/** Geminiが自動生成した概要 **/
コリンは、卵黄やダイズに豊富に含まれるホスファチジルコリンという形で存在します。ホスファチジルコリンはリン脂質の一種であり、細胞膜の主要な構成成分です。リン脂質は細胞膜の構造維持だけでなく、酵素によって分解されることでシグナル伝達にも関与しています。つまり、コリンは細胞膜の構成要素として、またシグナル伝達物質の原料として、生体内で重要な役割を担っています。

 

昨今の肥料不足に関して改善する余地は大きい

/** Geminiが自動生成した概要 **/
日本の農業は肥料不足が深刻化しているが、土壌改善により改善の余地は大きい。土壌劣化により保肥力が低下し、必要以上の施肥が必要となっている現状がある。土壌分析を活用し、リン酸やカリウムの使用量を見直すべきである。窒素は土壌微生物による窒素固定で賄える可能性がある。日本の豊かな水資源を活用した土壌改善は、肥料使用量削減の鍵となる。慣習的な栽培から脱却し、土壌と肥料に関する知識をアップデートすることで、省力化と生産性向上を実現できる。今こそ、日本の農業の転換期と言えるだろう。

 

稲作に秘められた大きな可能性

/** Geminiが自動生成した概要 **/
土壌中の糸状菌は、植物にとって病原菌にも共生菌にもなりえます。施肥量が多いと、植物は自身のエネルギーを使って菌根菌と共生する必要がなくなり、病原菌が繁殖しやすい環境になります。一方、施肥量が少ないと、植物は菌根菌と共生し、栄養や水分を得ようとします。結果として、土壌中の菌のバランスが変化し、病原菌の増殖が抑制されます。つまり、適切な施肥管理は、植物の健康を保ち、病害リスクを低減するために重要です。 (244文字)

 

レンゲ栽培の効果を高める為に

/** Geminiが自動生成した概要 **/
レンゲ栽培の効果を高めるには、土壌改良が重要です。レンゲと共生する根粒菌は適度な乾燥を必要とするため、廃菌床などの有機物を施し、水はけを改善します。さらに、根粒菌との共生を促進するため、土壌のpH調整も重要です。土壌pHが低い場合は、石灰ではなく、植物性有機物を施すことで緩衝性を高めるのがおすすめです。レンゲに限らず、マメ科緑肥の活用前に土壌改良を行うことで、効果的な生育促進が期待できます。

 

泥炭土の地域のハウス栽培は難易度が高い

/** Geminiが自動生成した概要 **/
泥炭土は有機物豊富だが、鉄など微量要素が少ない。ハウス栽培だと雨水による供給もなく、不足しやすい。緑肥で土壌中の比率が更に偏り、鶏糞の石灰が鉄の吸収を阻害、葉が黄化したと考えられる。泥炭土は畑作に向かず、ハウス栽培だと微量要素欠乏に注意が必要。

 

レンゲとナズナは共存しているのか?

/** Geminiが自動生成した概要 **/
レンゲを播種した田んぼで、ナズナが一面に繁茂し、レンゲと共存している様子が観察されています。筆者は、ナズナの旺盛な生育がレンゲにどのような影響を与えるのか、また、レンゲの播種密度を上げると土壌への影響がさらに大きくなるのではないかと考察しています。これは、過去にクローバ畑がエノコログサに覆われた経験から、緑肥の播種によって小規模ながら生態系の遷移が見られると期待しているためです。

 

物理性が向上した土壌の先にある緑肥

/** Geminiが自動生成した概要 **/
物理性の高い土壌では、土壌改良効果の高い緑肥としてアカザ科のシロザが期待されます。 記事では、土壌物理性の向上により、土壌の化学性・生物性も向上する可能性を示しています。連作が難しいホウレンソウも、土壌改良によって石灰なしでの連作が可能になるなど、土壌の物理性向上は重要です。 筆者は、土壌物理性の向上後、緑肥アブラナの後にシロザが自生することを例に、土壌の力で植物が育つサイクルが生まれる可能性を示唆しています。

 

固い土に単子葉の草々

/** Geminiが自動生成した概要 **/
土壌改良により土壌の物理性が向上すると、特定の単子葉植物の生育が抑制される可能性があるという観察記録です。 筆者は、固い土壌を好むが養分競争に弱い単子葉植物が存在すると推測し、土壌改良によってレンゲやナズナなどの競合植物が旺盛に生育することで、単子葉植物の生育が阻害されると考えています。 この観察から、土壌改良初期にはソルガムやエンバクを、その後は土壌生態系のバランスを整えるために緑肥アブラナを使用するなど、緑肥の種類選定の重要性を指摘しています。

 

物理性の改善 + レンゲの栽培で植生は変化したか?

/** Geminiが自動生成した概要 **/
筆者は、レンゲ畑がナズナで覆われた理由について、物理性の改善による土壌の変化でレンゲが育ちにくくなった可能性を考察しています。 昨年はレンゲが中心部を占めていたのに対し、今年はナズナが広がりレンゲの勢いが弱いためです。 物理性の改善は稲作にプラスですが、レンゲの生育に影響した可能性があり、今後の観察を通して緑肥としてのレンゲに代わる選択肢も検討する必要性を感じています。

 

レンゲ畑がナズナの花で白い絨毯化した

/** Geminiが自動生成した概要 **/
硫酸塩系肥料を継続使用すると、土壌に硫酸イオンが蓄積し、ミネラルバランスが崩れて生育が悪くなる問題がある。これを解決するには、硫酸イオンを吸収するアブラナ科の緑肥が有効である。アブラナ科は硫酸イオンを多く吸収する性質があり、肥料分の少ない土壌でも生育できる。硫酸塩系肥料の残留で生育が悪化した土壌にアブラナ科緑肥を栽培することで、硫酸イオン吸収による土壌環境改善効果が期待できる。

 

最近の肥料でよく見かける酸化還元電位

/** Geminiが自動生成した概要 **/
農薬や化学肥料の使用が土壌環境を悪化させるという意見に対して、反論を展開しています。 著者は、土壌中の微生物の量と多様性は有機物量に影響を受け、農薬や化学肥料の影響は限定的だと主張。また、連作障害の原因は特定の栄養素の過不足や病害虫の発生であり、農薬や化学肥料が直接の原因ではないと説明しています。 さらに、土壌pHの変化は施肥の影響を受けやすく、適切な土壌管理が必要だと指摘。結論として、農薬や化学肥料の使用と土壌環境悪化の因果関係は薄いと結論付けています。

 

道の隙間から生えたツワブキが大きい

/** Geminiが自動生成した概要 **/
道の舗装の隙間から、大きなツワブキが生えていることに驚いています。わずかな土しかないように見えるのに、大きく葉を広げ、花まで咲かせていることに疑問を感じています。舗装の下の土が少ないことを考えると、このツワブキの生命力に感嘆し、何を栄養にしているのか、舗装から養分を吸い上げているのではないかと想像しています。そして、このツワブキのように、少ない栄養でも育つ植物があれば、緑肥に役立つのではないかと考えています。

 

今年もひこばえをちらほらと見かける

/** Geminiが自動生成した概要 **/
記事では、田んぼに生える「ひこばえ」について言及しています。ひこばえは放置された稲の株から再び米が実る現象ですが、農業的には問題視されています。 筆者は、ひこばえの成長に使われる肥料を、土壌改良効果のある緑肥の生育に活用できたら良いと考えています。 さらに、土壌の物理性が向上すれば、収穫後の耕起を省略できる可能性にも触れています。しかし、一方で、土壌改良の効果を知ってしまうと、収穫後の作業を怠ることが、翌年の負担増加につながるジレンマも感じているようです。 そして、冬場に緑肥を育てることは、大気中の二酸化炭素固定につながり、SDGsの観点からも意義深いと締めくくっています。

 

中干し無しの稲作でリン酸第二鉄を組み込むべきか?

/** Geminiが自動生成した概要 **/
中干しなしの稲作では、リン酸の供給不足が懸念されます。中干しがないと土壌中のリン酸が溶脱しやすくなる一方、稲の生育期間が長いため、リン酸要求量も増加するためです。解決策としてリン酸第二鉄の施用が考えられます。リン酸第二鉄はジャンボタニシ防除剤として使用され、農薬登録の必要がなく、残存物は稲の肥料となります。また、鉄分供給は窒素固定細菌の活性化にも繋がり、リン酸供給不足と窒素固定能の向上という二つの課題を同時に解決できる可能性があります。ただし、リン酸第二鉄の原料は輸入に依存しているため、国際情勢に注意が必要です。

 

寒さが厳しい冬になると予想されている中で出来ること

/** Geminiが自動生成した概要 **/
今年の冬はラニーニャ現象の影響で厳しい寒さが予想されるため、畑作では平年以上の寒さ対策が必要です。作物の耐寒性を高めるだけでなく、地温上昇も重要です。 地温上昇には、廃菌床堆肥や米ぬかなどの有機質肥料の施用、緑肥の活用が有効です。土壌微生物による発酵熱や根の代謝熱で土が暖まります。 対処療法として、土壌に米ぬかを混ぜ込む中耕も有効ですが、窒素飢餓に注意が必要です。米ぬか嫌気ボカシ肥のような発酵が進んだ有機質肥料が理想的ですが、入手が難しい場合は、牛糞などの家畜糞の使用も検討できます。ただし、リン酸過多による耐寒性低下には注意が必要です。

 

大豆肉の普及には稲作の活用が重要であるはずだ

/** Geminiが自動生成した概要 **/
記事は、大豆肉の普及には稲作の活用が重要だと論じています。 従来、水田での大豆栽培は転作に伴う土壌の排水性改善が、稲作への復帰を困難にする点が懸念されていました。しかし、著者は、物理性を改善した水田での稲作は、水持ちを損なわずに秀品率を高めることから、稲作と大豆栽培を交互に行う輪作を提案しています。 具体的には、数回の稲作後に大豆を栽培し、土壌の極端な酸化を防ぐため、大豆と相性の良いマルチムギを栽培することを推奨しています。 さらに、水田は川の水を取り入れることで畑作に比べて微量要素欠乏が起こりにくいという利点も強調。稲作と大豆栽培を組み合わせることで、持続可能で効率的な食糧生産システムを構築できると結論付けています。

 

化学肥料を使うと土が壊れるということはどういうことかを考える

/** Geminiが自動生成した概要 **/
硫安などの化学肥料は土壌に悪影響を与えるという俗説がありますが、実際には土壌構造を直接破壊することはありません。 記事では、有機物が豊富な黒い土壌層が、化学肥料の使用によりやがて下の層のように有機物の少ない状態に戻るのかという疑問が提起されています。 そして、硫安のような強い酸性肥料が、土壌粒子と腐植酸の結合を断ち切り、腐植酸を土壌深くに流出させる可能性について考察しています。 しかし、化学肥料の多くは土壌構造を破壊するような直接的な作用を持たないことが補足されています。 結論としては、化学肥料が土壌に与える影響は複雑であり、一概に土壌を壊すと断言することはできません。

 

田からはじめる総合的病害虫管理

/** Geminiが自動生成した概要 **/
中干しをしない稲作は、カエルの大量発生により、IPM(総合的病害虫管理)に貢献する可能性があります。カエルは世代交代の早い害虫を捕食するため、耐性を持つ害虫への対策として有効です。さらに、カエルは水田周辺の畑にも生息範囲を広げ、間接的に畑の害虫駆除にも役立ちます。畑にカエルを誘致するには、緑肥を植えておくことが有効です。緑肥は土壌環境改善にも効果があり、カエルの住みやすい環境を作ります。このように、中干しなしの稲作と緑肥を活用した畑作は、環境に優しく持続可能な農業を実現する可能性を秘めています。

 

リン溶解菌を増やした時に溶脱するアルミニウムイオンを気にするべきか?

/** Geminiが自動生成した概要 **/
土壌の過剰な養分は、緑肥を栽培することで吸収させ、土壌環境の改善に役立てることができます。緑肥は、過剰な窒素やカリウムなどを吸収し、土壌中の養分バランスを整えます。また、緑肥を土壌にすき込むことで、有機物が供給され、土壌の物理性や生物活性が向上します。これにより、土壌の保水力や排水性が改善され、植物の生育に適した環境が作られます。さらに、緑肥は雑草の抑制にも効果があり、除草剤の使用量を減らすことにも繋がります。このように、緑肥は土壌の養分管理、土壌改良、雑草抑制に効果的な方法です。

 

木炭の施用と合わせて何の緑肥のタネを蒔けばいい?

/** Geminiが自動生成した概要 **/
サツマイモ基腐病対策として、土壌消毒ではなく木炭施用と緑肥栽培が有効です。黒ボク土壌ではリン酸過剰が病原菌繁殖の原因となるため、緑肥でリン酸吸収を促進し土壌から持ち出す必要があります。ソルガムやヒマワリはリン酸吸収に優れる緑肥ですが、背丈が高いためサツマイモとの混植は困難です。代替として、エンバクや背丈の低いマルチムギが考えられます。緑肥栽培中は土壌消毒を避け、リン酸吸収と土壌改良を優先することで、病原菌の抑制とサツマイモの耐性強化を目指します。

 

サツマイモの大産地で基腐病が蔓延しているらしい

/** Geminiが自動生成した概要 **/
サツマイモ基腐病が産地で蔓延し、収入減を引き起こしている。病原菌 *Plenodomus destruens* による基腐病は、牛糞堆肥の使用と連作が原因と考えられる。牛糞堆肥は土壌の糸状菌バランスを崩し、基腐病菌の増殖を助長する可能性が高い。また、連作も発病を促進する。解決策は、牛糞堆肥を植物性堆肥に変え、緑肥を導入して連作障害を回避すること。しかし、緑肥は時間を要するため、肥料による対策も必要。農薬は、既に耐性菌が発生している可能性が高いため、効果は期待できない。天敵であるトリコデルマやトビムシの活用も、牛糞堆肥の使用を中止しなければ効果は薄い。

 

葉が発する香りを整理してみる

/** Geminiが自動生成した概要 **/
植物の葉の香りは、損傷時にリノレン酸などの不飽和脂肪酸が酸化・分解され、揮発性が高まることで生成される。青葉アルコールを例に挙げると、リノレン酸より沸点・融点が大幅に低いため、気体になりやすい。この揮発した化合物を鼻で受容することで、人間は「青葉の香り」として認識する。 葉で生成された香り化合物は、周辺植物に吸収され、害虫耐性向上や天敵誘引などの効果をもたらす。この仕組みを利用し、脂肪酸を多く含む緑肥を栽培し、刈り倒すことで、畑全体に香り化合物を充満させる方法が考えられる。

 

土壌中の糸状菌が植物に対して病原菌となるか共生菌となるか?は施肥次第

/** Geminiが自動生成した概要 **/
トウモロコシの根から、強力な温室効果ガスである亜酸化窒素の発生を抑制する物質「BOA」が発見された。土壌に過剰な窒素肥料があると亜酸化窒素が発生するが、BOAはこの発生を最大30%抑制する。BOAは特定の土壌微生物の増殖を促し、これらの微生物が窒素を亜酸化窒素ではなく窒素ガスに変換するため抑制効果を持つ。この発見は、環境負荷を低減する農業への応用が期待される。現在、BOAを高濃度で分泌するトウモロコシ品種の開発や、土壌へのBOA散布による効果検証が進められている。

 

トウモロコシの根から強力な温室効果ガスの発生を抑える物質が発見された

/** Geminiが自動生成した概要 **/
東京新聞の記事は、食肉生産に伴う温室効果ガス排出問題を取り上げている。牛肉1kgの生産には二酸化炭素換算で約27kgの温室効果ガスが排出され、これは鶏肉の約7倍、野菜の約270倍に相当する。家畜のげっぷや糞尿からのメタン、飼料生産・輸送、森林伐採などが主な排出源だ。食生活の変化、特に牛肉消費の削減は、地球温暖化対策に大きく貢献する。国連は肉の消費量を週2回に抑えるよう勧告しており、代替タンパク質の開発も進んでいるが、消費者の意識改革と技術革新の両輪が必要とされている。

 

トマトと菌根菌

/** Geminiが自動生成した概要 **/
トマトはケイ素を必要とするが、根の輸送体の一部欠損により葉への運搬が不十分である。ケイ酸の葉面散布以外に、菌根菌との共生によるケイ素供給の可能性を探ったが、確証を得るに至らなかった。トマトは菌根菌と共生可能であり、共生菌がケイ素輸送を補完すれば、緑肥マルチムギとの同時栽培が有効となるかもしれない。たとえケイ素吸収への効果が無くても、マルチムギ栽培は鉄欠乏の回避に繋がる。

 

人手が足りないところは何処か?

/** Geminiが自動生成した概要 **/
農業における真の人手不足は、収穫作業ではなく、栽培管理、特に土壌管理にある。緑肥栽培のような予防策を怠り、結果的に病気蔓延による損失を招く事例は、人員配置とリスク評価の不足を露呈する。収穫要員は確保しやすいが、緑肥栽培のような高度な技術を要する作業を担う人材こそが不足している。つまり、農業の衰退は収穫労働力不足ではなく、土壌管理を含む栽培管理の人材不足が原因であり、堆肥や緑肥栽培の支援が解決策となる。

 

土壌中に青枯病菌を捕食する生物はいるのか?

/** Geminiが自動生成した概要 **/
トマトの青枯病対策として土壌消毒は効果が薄く、土壌中の原生生物に着目する必要がある。原生生物は細菌を捕食し、その際に植物ホルモンが増加して発根が促進される。青枯病菌は深さ40cmに潜伏するため、緑肥栽培で深く根を張らせることが有効である。緑肥栽培時は発根促進が重要なので、土壌改良材は緑肥に施肥する。根が土壌を耕し、形成する役割も重要。

 

トマト栽培の最大の課題の青枯病についてを見る

/** Geminiが自動生成した概要 **/
土壌病害、特に青枯病はトマト土耕栽培における深刻な問題であり、水耕栽培への移行の大きな要因となっている。青枯病菌は土壌消毒の有効範囲より深い層に潜伏するため、消毒は初期生育には効果があるように見えても、長期栽培のトマトでは後期に根が伸長し感染してしまう。結果として消毒コストと人件費の損失に加え、土壌劣化を招く。感染株の除去も、土壌中の菌を根絶しない限り効果がない。解決策として、果樹園で行われる土壌物理性の改善、特に根への酸素供給に着目した土作りが有効と考えられる。緑肥活用なども土壌改良に繋がる可能性がある。根本的な解決には、土壌環境の改善と病害への抵抗力を高める土作りが不可欠である。

 

牛糞で土作りをした時の弊害をまとめてみると

/** Geminiが自動生成した概要 **/
兵庫の進学校の高校生に肥料の話をした著者は、窒素肥料を減らして炭素資材を増やす土作りを提案した。生徒は土壌中の炭素の役割を理解し、微生物の餌となり土壌構造を改善することを説明できた。しかし、窒素肥料を減らすことによる収量減を懸念し、慣行農法との比較で収量が減らない具体的な方法を質問した。著者は、土壌の炭素貯留で肥料コストが下がり収量が上がる海外の事例を挙げ、炭素資材の種類や施用量、土壌微生物の活性化、適切な窒素肥料量の見極めなど、具体的な方法を説明する必要性を認識した。生徒の疑問は、慣行農法に慣れた農家にも共通するもので、新たな土作りを広めるには、具体的な成功事例と収量への影響に関するデータが重要であることを示唆している。

 

降雨時の水の逃げ道に住む草たち

/** Geminiが自動生成した概要 **/
ヤンマーの「根と微生物の根圏での活動」は、植物の根と土壌微生物の相互作用、特に「根圏」と呼ばれる根の周辺領域での複雑な関係性を解説している。植物の根は光合成産物を根圏に分泌し、多様な微生物を呼び寄せる。これらの微生物は、植物の生育に不可欠な窒素、リン、カリウムなどの養分を土壌から吸収しやすくする役割を果たす。具体的には、有機物の分解や難溶性養分の可溶化を通じて養分供給を助ける。さらに、特定の微生物は植物ホルモンを生成し、根の成長を促進したり、病原菌から植物を守る働きも持つ。根圏微生物の多様性と活性を高めることが、健康な植物育成、ひいては持続可能な農業につながる。

 

アルカリ性不良土壌向けの肥料について調べてみた

/** Geminiが自動生成した概要 **/
アルカリ性土壌では鉄欠乏が起こりやすいが、今回ムギネ酸類似体の安価な合成法が開発された。ムギネ酸はオオムギが鉄を吸収するために分泌するキレート物質だが、高価だった。この研究では、ムギネ酸の一部をプロリンに置換することで、安価で同等の機能を持つプロリンデオキシムギネ酸(PDMA)を開発した。この成果は、アルカリ性土壌での鉄欠乏対策に大きく貢献する。特に、イネ科植物はムギネ酸を分泌するため、緑肥として活用すれば土壌改良に繋がる。ライ麦やエンバクなどの緑肥も鉄吸収を促進する効果が期待される。

 

ヘアリーベッチ米栽培という取り組みで思うこと

/** Geminiが自動生成した概要 **/
ヘアリーベッチ米栽培は化学肥料削減を目指す良い取り組みだが、ハチミツもウリにすることで、ミツバチによる花粉持ち出しで亜鉛等のミネラル欠乏を起こす懸念がある。レンゲ米栽培と同様、水田への入水でミネラルが補給される地域は限られるため、収量低下を防ぐ工夫が必要だ。具体的には、稲藁鋤込み時に亜鉛豊富な米ぬかを散布するなどが考えられるが、持ち出し量を考えると微々たる効果かもしれない。理想的には川底の泥を利用したいが、現実的には難しい。ヘアリーベッチ米に限らず、環境負荷の少ない稲作を継続するには、ミネラルバランスへの配慮が不可欠である。

 

カラスノエンドウの群生の端にウマゴヤシ

/** Geminiが自動生成した概要 **/
カラスノエンドウ群生の端にウマゴヤシが生えているのが観察され、葉の量に対して花が小さく、緑肥への適性が推測されている。ウマゴヤシはコメツブツメクサと類似するが、葉と花の形状からウマゴヤシと判断された。花はマメ科特有の形で小型ハナバチしか蜜に届かない。カラスノエンドウに比べて勢力が弱いのは、花が小さいためハナバチの訪問が少ない、もしくはカラスノエンドウのアレロパシーの影響などが考えられる。緑肥としての有効性や、カラスノエンドウとの競合における要因について考察されている。

 

グロムス門の菌根菌とは何か?

/** Geminiが自動生成した概要 **/
野菜の美味しさは、品種、栽培方法、鮮度、調理法など様々な要因が複雑に絡み合って決まる。土壌の微生物やミネラルバランスが野菜の風味に影響を与えるように、環境全体が重要である。師匠の畑で育った野菜は、土壌の豊かさや適切な水やり、雑草との共存など、自然の力を最大限に活かした栽培方法によって、独特の風味と生命力に満ちている。美味しさを追求するには、野菜を取り巻く環境全体への理解と、栽培から調理までの各段階における丁寧な作業が必要となる。

 

河川敷でクサフジらしき草を見かけた

/** Geminiが自動生成した概要 **/
京都府ではクサフジは絶滅危惧種に指定されている。府内での分布は北部と南部のみに限られ、個体数も少ない。河川敷や堤防、道路法面などに生育するが、河川改修や草刈り、外来種との競合により減少している。 特に近年はナヨクサフジの侵入が脅威となっている。クサフジは在来の多年生草本で、蔓は1.5mほどになり、6-9月に青紫色の花を咲かせる。 京都府は河川管理者等への働きかけや、外来種の駆除、生息状況のモニタリングなどを実施し、クサフジの保全に努めている。

 

レンゲ米栽培の田の冬の端の様子

/** Geminiが自動生成した概要 **/
レンゲ米栽培の田んぼの端で、単子葉植物が繁茂し、一部ナズナが開花している様子が観察された。田んぼの端は水が溜まりやすく、養分が過多になっている可能性があり、草の生育が速い。ナズナの開花は2月頃からなので時期的には問題ないが、繁茂していない場所では開花が見られない。繁茂していることで、暖かさなど開花の条件が満たされた可能性がある。緑肥栽培においても、養分を多めに与えて生育しやすい条件を作るのが有効かもしれない。

 

葉緑素の分解産物が根の抵抗性を高めるらしい

/** Geminiが自動生成した概要 **/
農研機構の研究で、葉緑体分解産物であるフィトールがトマトの根のセンチュウ抵抗性を高めることが判明した。フィトールはクロロフィルの分解過程で生成されるアルコールで、土壌中のフィトールが根にエチレンを蓄積させ、抵抗性を向上させる。このメカニズムは、緑肥を刈り倒し土壌に成分を染み込ませる方法と類似しており、土壌消毒にも応用できる可能性がある。緑肥カラシナによるイソチオシアネート土壌消毒と組み合わせれば、相乗効果でセンチュウ被害や青枯病などの細菌性疾患を抑制し、根の養分吸収を維持、ひいては地上部の抵抗性向上にも繋がる可能性がある。

 

レンゲ米栽培の田の冬のレンゲの様子

/** Geminiが自動生成した概要 **/
この記事では、レンゲ米栽培の田んぼにおける冬のレンゲの様子を観察し、成長の違いから米の品質向上へのヒントを探っています。 晩秋の播種のため、レンゲの生育は遅く、寒さで葉は紫色に変色しています。ところが、田んぼの一部で繁茂するイネ科の草の根元では、レンゲの葉の色が紫色ではなく、成長も良好です。 これは、イネ科の草による遮光で、アントシアニンの合成が抑制され、その分の養分が成長に回されたためと考えられます。 通常、レンゲは日陰を好みますが、過剰なアントシアニン合成はリン酸欠乏などのストレス反応である可能性も示唆されています。 この記事は、イネ科の草とレンゲの共存関係に着目することで、レンゲの生育、ひいては米の品質向上に繋がる新たな知見を得られる可能性を示唆しています。

 

レンゲの播種は稲作収穫後のすぐ後

/** Geminiが自動生成した概要 **/
レンゲ米栽培では、稲刈り後のレンゲの播種時期が重要となる。10月下旬が播種限界の中、10月上旬が一般的な播種時期とされている。しかし、稲刈り後、レンゲ播種までの期間が短いため、藁の腐熟が問題となる。藁をそのまま鋤き込むとC/N比の問題が発生するため、粘土鉱物と藁を混ぜることで藁の炭素化合物の量を減らし、土壌化を促進する方法が有効と考えられる。レンゲの播種時期を考慮すると、木質有機物ではなく、粘土鉱物と藁のみの組み合わせが有効な可能性がある。

 

収穫後の田のひこばえを見て、稲作の未来を考える

/** Geminiが自動生成した概要 **/
亜鉛は植物の生育に必須の微量要素であり、欠乏すると生育不良や収量低下を引き起こす。亜鉛は様々な酵素の構成要素や活性化因子として機能し、タンパク質合成、光合成、オーキシン生合成などに関与する。亜鉛欠乏下では、植物はオートファジーと呼ばれる細胞内成分の分解・再利用システムを活性化させる。これにより、古いタンパク質や損傷したオルガネラを分解し、得られたアミノ酸などの栄養素を再利用することで、生育に必要な資源を確保し、ストレス耐性を向上させている。特に、葉緑体の分解は亜鉛の再転流に重要であり、新しい葉の成長を支えている。したがって、オートファジーは亜鉛欠乏への適応戦略として重要な役割を果たしている。

 

ジャンボタニシの対策の前に生態を知ろう

/** Geminiが自動生成した概要 **/
ジャンボタニシ対策には生態の理解が重要。徳島市は椿油かすの使用を控えるよう注意喚起している。ジャンボタニシは乾燥に強く、秋にはグリセロールを蓄積して耐寒性を上げるが、-3℃でほぼ死滅する。ただし、レンゲ栽培による地温上昇で越冬する可能性も懸念される。レンゲの根の作用で地温が上がり、ジャンボタニシの越冬場所を提供してしまうかもしれない。理想は、緑肥によってジャンボタニシの越冬場所をなくすことだが、乾燥状態のジャンボタニシに椿油かすのサポニンを摂取させるタイミングが課題となる。

 

風よけとしてのソルゴー

/** Geminiが自動生成した概要 **/
ネギ畑で風よけ・排水性向上を目的に、ソルゴーを数畝ごとに植えている様子が観察された。ソルゴーの上部のオレンジ色は、開花期の蕊であり、カロテノイドによるものと考えられる。 通常、緑肥は開花前に刈り取ることで効果が最大になるが、風よけとして利用する場合、開花による花粉の飛散で微量要素が失われる点に注意が必要だ。レンゲなど開花前提の緑肥栽培でも同様のことが言える。この養分損失への意識を持つことで、作物の秀品率向上に繋がる可能性がある。

 

基肥のリン酸が発根促進であるならば

/** Geminiが自動生成した概要 **/
緑肥に関する書籍の内容を250文字で要約します。 緑肥の効果的な活用には、土壌環境と緑肥の種類の組み合わせが重要です。土壌のpH、排水性、養分量などを分析し、適切な緑肥を選択する必要がある。レンゲは酸性土壌に強く窒素固定効果が高い一方、ヘアリーベッチはアルカリ性土壌にも適応し、線虫抑制効果も期待できる。緑肥のすき込み時期も重要で、開花期が最も栄養価が高く、土壌への還元効果が最大となる。土壌分析に基づいた緑肥の選択と適切な管理が、地力向上と健全な作物栽培につながる。

 

放棄された田はカヤツリグサでも生き残れない

/** Geminiが自動生成した概要 **/
耕作放棄された水田は深刻なひび割れが生じ、土壌が劣化している。稲作はおろぼず、通常強いカヤツリグサさえも枯死していることから、土壌劣化の末期状態と考えられる。カヤツリグサ科の植物は土壌が固い場所を好むため、これらの植物の出現は土壌劣化、特に土壌の弾力低下を示す指標となる可能性がある。この状態では、緑肥を蒔いても効果は期待できない。土壌の劣化は作物の発根を阻害するため、カヤツリグサ科の植物の繁茂は、栽培を見送る、あるいは堆肥を増やすなどの対策が必要なサインとなる。

 

ケイ素を利用する細菌たち

/** Geminiが自動生成した概要 **/
水田土壌中の細菌がイネのケイ素吸収に関与する可能性が示唆されている。ケイ素を取り込む細菌24株は全てバチルス属で、食中毒菌のセレウス菌(B.cereus)や生物農薬に使われるBT剤(B. thuringiensis)なども含まれる。バチルス属はケイ素の殻を作ることで過酷な環境を生き抜くとされ、B.cereusはケイ素により耐酸性を得ている可能性がある。ケイ素の吸収にはマンガン、亜鉛、カルシウム、鉄等のミネラルが必要で、特に水田で欠乏しやすい亜鉛の供給が重要となる。土壌中の細菌がケイ素を吸収しやすい環境を整えることで、猛暑下でもイネの秀品率維持に繋がる可能性がある。

 

維管束とオーキシンと発根

/** Geminiが自動生成した概要 **/
植物ホルモンであるオーキシンは、アミノ酸のトリプトファンから合成され、維管束形成と発根に重要な役割を果たす。頂端で生成されたオーキシンは師管を通って地際へ移動し、内鞘細胞に作用して細胞分裂を促し、発根を誘導する。同時にオーキシンは維管束形成も促し、根の伸長をサポートする。根の先端の高い養分濃度により、サイトカイニン等の関与無しに養分転流が起こる。さらに、オーキシンの発根作用には亜鉛も必要で、細胞内で何らかの機能を果たしていると考えられる。ただし、亜鉛はオーキシン合成自体には関与しない。

 

レンゲ米栽培の水田と有機一発肥料

/** Geminiが自動生成した概要 **/
長野県JAグループのサイトによると、飯綱町のオオアカウキクサは水田雑草抑制に利用されている。しかし、その効用は水温低下によるもので、稲の生育初期には生育を阻害する可能性がある。一方、生育後期には雑草抑制効果を発揮し、除草剤使用量を減らす効果が期待できる。また、オオアカウキクサ自体も緑肥として利用可能で、持続可能な農業への貢献が注目されている。しかし、水温への影響を考慮し、使用方法や時期を適切に管理する必要がある。さらに、オオアカウキクサの繁殖力の強さから、周辺水域への拡散防止策も必要となる。

 

稲作の中干しの意義を整理する

/** Geminiが自動生成した概要 **/
レンゲ米栽培の水田では、葉色が薄く地上部の茂りが少ない一方で茎は太く、背丈が揃っている。慣行栽培と比べ、中干し時に土壌のひび割れが発生しにくい。これはレンゲによる土壌改良で有機物が増え、クラスト(乾燥ひび割れ)が生じにくいため。クラストは露地栽培では生育障害を起こすが、水田では発根促進のためのガス交換の場となる。レンゲ米ではひび割れがないことで有害物質の排出が懸念されるが、レンゲが事前に有害物質を軽減している。一方、中干しは根の損傷やROLバリアの質低下といったデメリットも持つ。レンゲ米で中干しの効果が薄まるなら、元肥設計を見直す必要がある。肥料偽装問題で硫安が使用された事例は、土壌への影響を考えると深刻な問題と言える。

 

水生植物であるイネの根腐れについて考える

/** Geminiが自動生成した概要 **/
イネの根腐れは、長雨による酸素不足ではなく、硫化水素の発生が原因である可能性が高い。硫化水素は、水田の嫌気環境下で、硫酸塩系肥料(硫安、キーゼライト、石膏、家畜糞堆肥など)が土壌微生物によって分解される際に発生する。生物は硫黄を再利用する進化を遂げているため、土壌に硫黄化合物が過剰に存在するのは不自然であり、肥料由来と考えられる。硫化水素は鉄と反応しやすく、イネの光合成や酸素運搬に必要な鉄の吸収を阻害する。水田は水漏れしにくいため、過去の肥料成分が蓄積しやすく、硫黄を抜く有効な手段がないため、田植え前の土壌管理が重要となる。ただし、長雨による日照不足や水位上昇も根への酸素供給を阻害する要因となりうる。

 

緑肥栽培中に追肥を行う価値はあるか?

/** Geminiが自動生成した概要 **/
緑肥栽培、特にレンゲは、地力維持に重要だが、ミネラル流出やアルファルファタコゾウムシによる食害増加など課題も多い。緑肥効果を高めるには発根量増加が鍵で、地上部の成長も促進される。そこで、作物ほどではないにしろ、緑肥栽培中にアミノ酸系葉面散布剤を散布することで、栄養補給だけでなく、病害虫への抵抗性も高まり、次作の生育に有利に働く可能性がある。特にマメ科緑肥は害虫被害を受けやすいため有効と考えられる。イネ科緑肥の場合は、家畜糞堆肥のような根元への追肥も有効かもしれない。

 

開花させることが前提のレンゲを栽培する時に注意すべきこと

/** Geminiが自動生成した概要 **/
開花前提のレンゲ栽培は、開花で多くの養分が消費・持ち去られるため、事前の土作りが重要。レンゲは多花粉型蜜源で、ミツバチが花粉を大量に持ち去るため、特に亜鉛の喪失に注意。前作の米も花粉を生成し、一部はミツバチによって持ち去られるため、土壌への負担は大きい。水田へのミネラル供給は地域差があり、不明確。耕作放棄地でのレンゲ栽培は、放棄理由が収量低下の場合、蜂蜜の品質に期待できない。つまり、レンゲ栽培、特に開花させる場合は、土壌の養分、特に亜鉛を意識した土作りが必須となる。

 

レンゲ米の質を向上させることはできるか?

/** Geminiが自動生成した概要 **/
レンゲ米の質向上には、レンゲの生育環境改善が鍵となる。レンゲの旺盛な発根を促し、根圏微生物の活動を活発化させることで、土壌の団粒構造が形成され、難吸収性養分の吸収効率が高まる。 具体的には、稲刈り後の水田の土壌を耕し、粘土質土壌をベントナイト等の粘土鉱物や粗めの有機物で改良することで、レンゲの根張りを良くする。さらに、レンゲ生育中に必要な金属成分を含む追肥を行うことで、フラボノイドの合成を促進し、根粒菌との共生関係を強化する。 つまり、レンゲ栽培前の土壌改良と適切な追肥が、レンゲの生育を促進し、ひいては次作の稲の品質向上、ひいては美味しいレンゲ米に繋がる。緑肥の効果を高めるためには、次作で使用する土壌改良資材を前倒しで緑肥栽培時に使用することも有効である。

 

レンゲ米は美味しいのか?の続き

/** Geminiが自動生成した概要 **/
鉄は植物の生育に必須だが、アルミニウムは毒性を示す。土壌中の鉄は主に三価鉄(Fe3+)として存在し、植物はそれを二価鉄(Fe2+)に変換して吸収する。この変換には、根から分泌されるムシゲニンや、土壌中の微生物が関与する。ムシゲニンは鉄とキレート錯体を形成し、吸収を促進する。一方、アルミニウムもムシゲニンと錯体を形成するが、植物はアルミニウムを吸収せず、錯体のまま土壌中に放出することで無毒化する。レンゲなどの緑肥は土壌微生物を増やし、ムシゲニン分泌も促進するため、鉄吸収の向上とアルミニウム無毒化に貢献する。結果として、健全な植物生育が促される。

 

レンゲ米は美味しいのか?

/** Geminiが自動生成した概要 **/
レンゲ米は窒素固定による肥料効果以上に、土壌微生物叢や土壌物理性の向上、連作障害回避といった効果を通じて美味しさを向上させると推測される。レンゲ栽培は土壌への窒素供給量自体は少ないが、発根量が多いほど効果が高いため、生育環境の整備が重要となる。また、美味しい米作りには水に含まれるミネラルやシリカの吸収も重要であり、レンゲ栽培はこれらの吸収も促進すると考えられる。油かすや魚粉といった有機肥料も有効だが、高評価の米産地ではこれらを使用していない例もあり、美味しさの要因は複雑である。

 

高槻の清水地区のレンゲ米の水田の田起こし

/** Geminiが自動生成した概要 **/
高槻市清水地区のレンゲ米水田では、冬季にレンゲを栽培することで土壌改良が行われている。レンゲを鋤き込んだ後の水田は土が柔らかく、トラクターの跡が残らないほど軽い。これはレンゲにより土壌中の有機物が分解され、土の粒子同士の結合が弱まったためと考えられる。一方、レンゲを栽培していない隣の田んぼは土が固く、大きな塊が目立つ。レンゲ栽培は土壌の物理性を改善し、イネの根の生育を促進、肥料吸収の向上に繋がる。この水田ではベントナイトも使用されているため、レンゲ単独の効果の検証ではないが、レンゲ栽培は根圏微生物叢の向上、ひいては土壌への有機物馴染みの促進に貢献する。窒素固定も微生物叢向上に繋がる重要な要素である。

 

藤棚の周りを飛び交うクマバチたち

/** Geminiが自動生成した概要 **/
クマバチは縄張り意識が強く、特に繁殖期にはオスが縄張りをパトロールし、侵入する他の昆虫を追い払う習性を持つ。藤棚のような蜜源の豊富な場所は、メスを惹きつけるため、オスにとって重要な縄張りとなる。 チョウを追い回していたのは、メスと間違えたか、縄張りを守るための行動だったと考えられる。彼らは空中で静止するホバリング飛行を得意とし、他の昆虫を執拗に追いかける。 見た目や羽音は恐ろしいが、人間への攻撃性は低く、温厚な性格である。 針を持つのはメスのみで、オスは刺さない。

 

肥料が花粉の量と質に影響を与えるか?

/** Geminiが自動生成した概要 **/
レンゲの栽培において、アルファルファタコゾウムシは主要な害虫となる。成虫はレンゲの葉を食害し、幼虫は根に寄生して養分を吸収するため、生育不良や枯死を引き起こす。特に、温暖な地域で被害が深刻化しやすい。防除策としては、薬剤散布や播種時期の調整などが挙げられる。薬剤散布は効果的だが、ミツバチへの影響も考慮する必要がある。播種時期を早めることで、幼虫の発生ピークを避けられる可能性がある。また、抵抗性品種の利用も有効な手段となる。天敵である寄生蜂の存在も確認されており、生物的防除の可能性も示唆されている。総合的な対策を講じることで、アルファルファタコゾウムシによる被害を軽減し、レンゲの安定した栽培を実現できる。

 

そこにハコベが現れた

/** Geminiが自動生成した概要 **/
庭の有機物堆肥化エリアに、今まで存在しなかったハコベが出現した。有機物とベントナイトを添加することで、以前は繁茂していたカタバミが減少している。筆者はこれを、菌根菌の効果ではないかと推測している。しかし、緑肥の試験では逆に菌根菌がハコベを抑制することが多い。栽培しやすい土壌ではハコベなどの特定種の雑草が優勢になることが知られている。筆者は、菌根菌以外の要因を探る必要があると考えている。

 

根は地面を耕し土を形成する

/** Geminiが自動生成した概要 **/
竹野海岸のグリーンタフ観察から土壌形成の過程を考察。グリーンタフは火山活動で生成された緑色の凝灰岩で、風化しやすい。風化によって粘土鉱物や金属イオンが放出され、土壌の母材となる。植物の根は土壌の固い部分を砕き、根の先端からは有機酸が分泌される。有機酸は鉱物の風化を促進し、根の表層から剥がれ落ちたペクチンなどの有機物は粘土鉱物と結合し、団粒構造を形成する。さらに、根から放出された二次代謝産物は微生物によって重合し、土壌に吸着される。このように、岩石の風化、植物の根の作用、微生物活動が複雑に絡み合い、土壌が形成される過程をグリーンタフ観察から推察できる。

 

実体顕微鏡で土と混ぜたコロイド化したベントナイトを見る

/** Geminiが自動生成した概要 **/
ベントナイトとゼオライトの土壌への影響を比較観察した。ベントナイトは水を含むと膨潤し、土壌粒子間を糊のように満たすことで、土壌構造に変化をもたらす。これは顕微鏡観察で確認され、土壌団粒化への影響が示唆された。一方、ゼオライトはイオン交換性を持つものの膨潤性は無く、土壌粒子と混ざらず鉱物の形を保っていた。これはベントナイトのように土壌構造に直接的な変化を与えないことを示唆する。両者を比較することで、ベントナイトの膨潤性が土壌への影響において重要な役割を果たすことが明らかになった。

 

緑肥について学んでいた時に指針となった本

/** Geminiが自動生成した概要 **/
マルチムギは、土壌の団粒化を促進し、排水性と通気性を向上させる効果を持つ緑肥。劣化した圃場でも旺盛に生育し、土壌改良に役立つ。筆者は、マルチムギを播種した区画と播種していない区画で比較試験を実施。マルチムギを播種した区画では、播種していない区画に比べ、土壌硬度が低く、透水性が高いという結果が得られた。これは、マルチムギの根が土壌をほぐし、団粒化を促進したためと考えられる。マルチムギは、耕作放棄地など、劣化した土壌の改良に有効な緑肥と言える。

 

高槻の原生協コミュニティルームで緑肥の話をしました

/** Geminiが自動生成した概要 **/
大阪府高槻市の生協コミュニティルームで、塩類集積によるハウス土壌劣化への対策として緑肥の講演が行われた。発起人は引き継いだハウスの土壌改善に悩んでおり、緑肥の選定方法などの知見を求めていた。農業における人手不足と土壌劣化は深刻な問題であり、耕作放棄地の増加も懸念される。少ない費用と労力で土壌環境を改善する手段として緑肥は有効であり、講演はハウス栽培の改善に繋がる事が期待される。講演者は京都農販のブログで緑肥に関する記事を執筆しており、ハウス内の塩類集積対策等について発信している。マルチムギの土壌改善効果や緑肥に関する書籍の情報も紹介されている。

 

タデ科の草の根を見る

/** Geminiが自動生成した概要 **/
筆者はタデ科の草、おそらくスイバの根を観察した。掘り出した根は黄色く、漢方薬に使われるスイバの根の特徴と一致していた。冬の寒さにも関わらず、多数の新根が生えており、冬場も植物が発根することを実感。この事実は緑肥栽培において励みになる。さらに、かつて師事した際に、生育中の緑肥を掘り起こし、根の形を比較する学習をしたことを想起した。

 

ライ麦パンの知見から緑肥の選定に活かせるか?エンバク編

/** Geminiが自動生成した概要 **/
イネ科緑肥は、土壌への窒素供給効果は限定的だが、土壌構造改善に大きく貢献する。特に、大麦やエン麦などの緑肥は、線虫抑制効果も期待できる。緑肥投入後の土壌は団粒化が進み、通気性・排水性・保水性が向上する。これにより、根の伸長が促進され、養分吸収が向上し、結果として秀品率向上に繋がる。さらに、緑肥の根は土壌を深くまで耕す効果もあり、硬盤層の解消にも役立つ。ただし、緑肥の効果は土壌条件や投入時期、分解期間などに左右されるため、適切な管理が重要となる。加えて、緑肥のすき込み時期を遅らせると、窒素飢餓のリスクも存在する。

 

ライ麦パンの知見から緑肥の選定に活かせるか?

/** Geminiが自動生成した概要 **/
イネ科緑肥の効果について、従来の窒素固定効果への疑問と、土壌物理性改善効果への注目を再考しています。マメ科と比較して窒素固定効果は限定的だが、多量の炭素供給による土壌有機物増加、団粒構造促進、保水性・排水性向上といった物理性の改善効果が大きい。特に、線虫抑制効果や、後作のリン酸吸収促進効果も期待される。ただし、イネ科緑肥単独での窒素供給は不足するため、堆肥など有機物との併用や、土壌窒素量への配慮が必要。緑肥投入後の土壌変化を理解し、適切な管理を行うことで、持続的な土づくりに貢献できる。

 

パンから得られる知見を栽培に活かせるか?

/** Geminiが自動生成した概要 **/
パン作りにおける乳酸菌の活性化には、糖類だけでなくビタミンも必要という話から、土壌微生物資材の効果的な利用について考察。微生物資材を使う前に、微生物にとって快適な土壌環境(ビタミンを含む栄養素が十分に存在する状態)を作る重要性を指摘。肥料だけでなくビタミンも土壌に施すことで、微生物の活性化を促し、想定以上の効果が得られる可能性を示唆。土壌微生物へのビタミンの重要性に気づいたことが最大のポイント。

 

冬野菜の生産性の向上は地温から

/** Geminiが自動生成した概要 **/
土壌からの強力な温室効果ガス、一酸化二窒素(N₂O)の排出は、地球温暖化に大きく寄与している。N₂Oは窒素肥料の施用によって増加し、特に硝化作用と脱窒作用が主要な発生源となる。硝化作用は好気的環境でアンモニアが硝酸に酸化される過程、脱窒作用は嫌気的環境で硝酸が窒素ガスやN₂Oに還元される過程である。土壌の水分状態、酸素濃度、有機物含量、温度などがこれらの反応速度に影響を与えるため、N₂O排出量は変動する。過剰な窒素肥料施用はN₂O排出を増加させるため、土壌診断に基づいた適切な施肥管理が重要となる。また、硝化抑制剤や緑肥の活用など、N₂O排出削減のための技術開発も進められている。

 

土壌消毒の前に土壌改良材を使用すべきか?

/** Geminiが自動生成した概要 **/
土壌消毒前に廃菌床などの土壌改良材を使用すべきか、消毒後が良いのかという問いに対し、消毒前に使用することを推奨する。理由は、土壌改良材の使用により土壌物理性が向上し、クロルピクリンくん蒸剤が土壌深くまで浸透しやすくなり、消毒効果が高まるため。また、土壌改良材は土壌鉱物を保護し、窒素化合物の酸化作用による微量要素の溶脱やアルミニウム溶脱を防ぐ効果も期待できる。有用微生物相への影響については、土壌消毒が必要なほど劣化した土壌では、そもそも有用微生物の活動は低いと考えられる。理想的には、土壌改良材→土壌消毒→土壌改良材+有機質肥料の順序で施用するのが良い。

 

食害虫防除としての草生栽培の可能性を探る

/** Geminiが自動生成した概要 **/
草生栽培は、害虫防除に有効な可能性を秘めている。高齢農家は雑草を増やすと害虫も増えると考えるが、抵抗性誘導で害虫を防除できる。草が傷つくとジャスモン酸が合成され、ジャスモン酸メチルとして周辺に伝播し、作物の抵抗性を向上させる。スパイダーモアなどで通路の草を刈り、損傷させることで抵抗性誘導を促せる。刈る草も健康的に育てるため、肥料を与えて発根を促進するのが良い。ネギの畝間にマルチムギを生やすとアザミウマの被害が減った事例もあり、草を生やすこと自体が良い刺激になる可能性がある。ただし、草生栽培を行う前に、土壌を良い状態にしておくことが重要である。

 

植物エクジソンを求めて

/** Geminiが自動生成した概要 **/
ヨトウガは広食性で農作物に甚大な被害を与える害虫。日本では越冬できる地域が限られると考えられていたが、近年ハウス栽培で越冬する可能性が指摘されている。ヨトウガの卵塊は風に乗って長距離移動するため、越冬場所の特定は防除対策において重要。もし全国的に冬場にホウレンソウ栽培が広がれば、ホウレンソウに含まれる植物エクジソンがヨトウガの生育を阻害し、越冬を抑制する可能性がある。

 

アミノ酸で青枯病を予防する

/** Geminiが自動生成した概要 **/
アミノ酸が植物病害、特に青枯病の予防に効果を持つ可能性が示唆されている。トマトでは酵母抽出液中のヒスチジンが青枯病の発病を抑える効果があり、アミノ酸肥料自体が予防効果を持つ可能性が出てきた。一方、イネではグルタミン酸が抵抗性を向上させる。グルタミン酸豊富な黒糖肥料はイネの青枯病予防に有効で、サリチル酸と同様の予防効果の伝播も期待できる。このことから、単子葉植物の緑肥マルチムギに黒糖肥料を与えることで、予防効果を高められる可能性がある。

 

青枯病対策としてのDIMBOA

/** Geminiが自動生成した概要 **/
アブラナ科残渣すき込みによる土壌復活効果の考察から、トウモロコシ由来のフィトアンシピンDIMBOAに着目。DIMBOAは根から分泌され抗菌作用と有益根圏微生物の増殖促進効果を持つ。これを青枯病対策に応用するため、深根性緑肥ソルガムの活用を提案。ソルガム栽培によりDIMBOAを土壌深くに浸透させ、青枯病菌抑制と健全な根圏環境構築を目指す。しかし、果菜類栽培期間との兼ね合いが課題。解決策として、栽培ハウスと休耕ハウスのローテーションを提唱。休耕ハウスで夏にソルガムを栽培し、秋〜春に他作物を栽培する。連作回避で青枯病抑制と高品質果菜収穫を両立できる可能性を示唆。ただしDIMBOAの他作物病原菌への効果は未検証だが、有益根圏微生物の活性化による効果も期待できる。

 

環境に優しい土壌消毒のダゾメット

/** Geminiが自動生成した概要 **/
土壌消毒剤ダゾメットは、土壌中で分解されメチルイソチオシアネート(MITC)を生成することで殺菌・殺虫作用を発揮する。MITCは生物の必須酵素の合成阻害や機能停止を引き起こす。ダゾメットはクロルピクリンに比べ使用頻度が高い。MITCはアブラナ科植物が害虫防御に生成するイソチオシアネート(ITC)の一種であり、ジャスモン酸施用で合成が促進される。ITCの殺虫作用に着目すると、緑肥カラシナを鋤き込むことでダゾメット同様の効果が期待できる可能性がある。これは、カラシナの葉に含まれる揮発性のITCが土壌に充満するためである。土壌還元消毒は、米ぬかなどを土壌に混ぜ込み、シートで覆うことで嫌気状態を作り、有害微生物を抑制する方法である。この方法は、土壌の物理性改善にも効果があり、環境負荷も低い。

 

土壌消毒について見直す時期ではないだろうか?

/** Geminiが自動生成した概要 **/
土壌消毒を見直すべき時期が来ている。深く耕すと病原菌が浮上する懸念があるが、土壌消毒剤は深部に届かない可能性がある。糖蜜やエタノールを用いた土壌還元消毒は深部の病原菌を減少させる効果がある。これは米ぬかによる土壌還元消毒と同じ原理で、嫌気環境下で有機物が分解される際に土壌の酸化還元電位が変化し、過酸化水素や二価鉄が生成され、ヒドロキシラジカルによる強力な滅菌作用が生じるためと考えられる。土壌改良材、米ぬか/糖蜜、酸素供給材を組み合わせ、マルチで覆うことで、病原菌の生育環境を改善できる可能性がある。連作を避け、ソルガムなどの緑肥を栽培すれば更に効果的。米ぬかは菌根菌増殖や食害軽減にも繋がる。

 

病害虫の予防は御早めに

/** Geminiが自動生成した概要 **/
この記事は、病害虫対策において先手を打つことの重要性を、畑A, B, C, Dを例に説明しています。畑Aが土壌微生物による虫忌避対策を行うと、害虫は他の畑B, C, Dに移動し、これらの畑は殺虫剤の増加による経費増、あるいは収率減に見舞われます。 Aの成功を見てCも対策を始めると、害虫はBとDに集中し、Dは経営悪化で倒産。最終的にAがDの土地を獲得します。これは、先見の明を持つ者が利益を独占するビジネスの典型的な勝ちパターンだと指摘。 最初に何をするべきかを見極めた者が、農業経営においても成功を収めると結論づけています。 関連の記事では、家畜糞堆肥の使用中止を推奨しています。理由は、堆肥の過剰な投入は土壌のバランスを崩し、病害虫の発生を招くため。堆肥に頼らず、土壌本来の力を活かすことが重要だと主張しています。

 

椰子の実の脂肪酸と菌根菌

/** Geminiが自動生成した概要 **/
リン酸過剰土壌で緑肥栽培を行う際、ヤシガラ施用が有効な可能性がある。ヤシガラ成分中のラウリン酸がアーバスキュラー菌根菌(AM菌)増殖を促進するとの研究結果が存在する。AM菌はリン酸吸収を助けるため、ヤシガラ施用→AM菌増殖→緑肥のリン酸吸収促進、という流れで土壌中のリン酸過剰を是正できる可能性がある。家畜糞堆肥等でリン酸過剰になった土壌で緑肥栽培を行う際、播種前にヤシガラを土壌に施用することで、緑肥によるリン酸吸収を促進し、土壌クリーニング効果を高められるかもしれない。

 

人にとっての旨味成分が植物の発根を促進するか?

/** Geminiが自動生成した概要 **/
鶏肉や魚粉に含まれる旨味成分、イノシン酸の関連物質であるイノシンが植物の発根を促進する。農研機構の研究で、イノシンが水耕栽培で根の発育を促すことが示された。イノシンはアミノ酸製造の副産物であり、黒糖肥料に多く含まれる可能性がある。発根促進は微量要素の吸収を高め、品質向上に繋がる。土壌劣化を回避し、微量要素が吸収しやすい環境を維持することが重要となる。アミノ酸廃液由来の発根促進剤も市販されている。発根促進でカリウム欠乏も軽減できるため、黒糖肥料は発根に有効。

 

硫酸塩系肥料の残留物がある土を緑肥で解決したい

/** Geminiが自動生成した概要 **/
牛糞堆肥は土壌の乾燥ストレス軽減に効果的な資材である。土壌中の有機物量増加による保水性向上、土壌構造の改善による水浸透性の向上、そして微生物相の活性化による養分保持力の向上が、乾燥ストレス耐性向上に繋がる。化学肥料中心の農業では土壌有機物が減少し、乾燥に脆弱になる。牛糞堆肥は持続可能な農業を実現するための重要なツールとなる。しかし、効果的な活用には土壌の状態や施用量を適切に管理する必要がある。

 

基肥で硫酸苦土肥料を仕込む前に

/** Geminiが自動生成した概要 **/
家畜糞堆肥は土壌改良に有効とされるが、過剰施用は土壌環境を悪化させる。堆肥中のリン酸過剰はリン酸固定を引き起こし、植物のリン酸吸収を阻害する。また、カリウムも過剰になりやすく、マグネシウム欠乏を誘発する。さらに、堆肥に含まれる硫酸イオンは土壌に蓄積し、高ECや硫化水素発生の原因となる。これらの問題は土壌の物理性、化学性、生物性を悪化させ、作物の生育に悪影響を及ぼす。持続可能な農業のためには、堆肥施用量を適切に管理し、土壌分析に基づいた施肥設計を行う必要がある。盲目的な堆肥施用ではなく、土壌の状態を理解した上での施肥管理が重要である。

 

鉄の吸収とアルミニウムの無毒化

/** Geminiが自動生成した概要 **/
土壌のアルミニウム無毒化機構を持つMATE輸送体は、元々鉄の吸収を担うクエン酸輸送体から進化したとされる。この事実は、緑肥による微量要素吸収効率改善の可能性を示唆する。鉄は土壌中に豊富だが鉱物として存在し、植物が利用するには溶解という困難なプロセスが必要となる。しかし、緑肥は土壌から鉄を吸収し、葉にキレート錯体や塩として蓄積するため、鋤き込みによって土壌へ供給される鉄は利用しやすい形態となる。つまり、緑肥はアルミニウム耐性だけでなく、鉄をはじめとする微量要素の吸収効率向上にも貢献していると考えられる。この仮説が正しければ、緑肥栽培の事前準備にも影響を与えるだろう。

 

JA愛知北の青年部会で肥料や緑肥の話をしました

/** Geminiが自動生成した概要 **/
JA愛知北の青年部会研修会で、肥料と緑肥に関する講演を行いました。参加者には緑肥を活用している方が多く、エンバクの効果やソルゴーの刈り取り時期など、具体的な問題や改善策についての議論が活発に行われました。 講演はブログ読者からの依頼がきっかけで実現しました。参加者からは、エンバクの効果が期待通りではなかったという声や、ソルゴーの最適な刈り取り時期に関する質問など、実践的な内容が多く寄せられました。これに対し、より効果的な緑肥の活用方法や工夫について説明しました。過去にはマルチムギの土壌改良効果や、JA愛知北青年部会での肥料に関する講演についてもブログで紹介しています。

 

風化して崩れた斜面にキノコ

/** Geminiが自動生成した概要 **/
風化斜面に生えたキノコは、樹木の根元の有機物を分解していることが示唆される。これは、植物の根が有機物量を増やし、キノコがそれらを分解することを目の当たりにする好例。このプロセスは、植物の成長、土壌の肥沃度、生態系のバランスに不可欠である。

 

ナミハダニに対するプラントアクティベータ

/** Geminiが自動生成した概要 **/
農研機構の研究では、タバコ由来の「ロリオライド」がナミハダニを始めとする害虫の生存率・産卵数を低下させることが明らかになりました。ロリオライドは殺虫作用を持たず、プラントアクティベータとして働きます。これは、作物の害虫に対する防御反応を示唆しています。 ロリオライドはカロテノイドを起源とし、カロテノイドが分解される際に生じます。植物は、害虫に対する防御反応の一環として、ロリオライドなどのプラントアクティベータを使用している可能性があります。この研究は、害虫防除のための新たな戦略につながる可能性があります。

 

ネナシカズラの寄生の仕方

/** Geminiが自動生成した概要 **/
ネナシカズラは、種子の寿命が長く、動物の胃の中でも生存できることから、日本全国に広く分布しています。 寄生するためには宿主植物に巻きつき、寄生根で宿主体内に侵入します。その寄生根は宿主植物の維管束と繋がり、寄生を開始します。 ただ、すべての植物に寄生できるわけではなく、宿主植物の種類によっては寄生率が低くなります。また、幼植物は寄生率が低いため、生き残る確率も低くなります。 そのため、ネナシカズラがイネ科の植物に寄生できる可能性は低く、雑草の多い畑や、通路に雑草対策が施されている畑では被害は限定的である可能性があります。

 

アルミニウムの結合力とポリフェノールの吸着性

/** Geminiが自動生成した概要 **/
イネ科緑肥の根から分泌されるムギネ酸類は、アレロパシー物質として雑草抑制効果を持つとされてきた。しかし、ムギネ酸類は鉄キレート化合物であり、鉄欠乏土壌で鉄を吸収するための物質である。鉄欠乏土壌では、ムギネ酸類の分泌により雑草も鉄欠乏に陥り、生育が抑制される。つまり、ムギネ酸類自体は直接的なアレロパシー物質ではなく、鉄欠乏を介した間接的な効果である可能性が高い。実際、鉄欠乏でない土壌ではムギネ酸類による雑草抑制効果は確認されていない。したがって、イネ科緑肥のアレロパシー効果は、土壌の鉄の状態を考慮する必要がある。

 

京都八幡のとらこ株式会社さんで緑肥の活用の話をしました

/** Geminiが自動生成した概要 **/
京都八幡のとらこ株式会社で、社内研修として緑肥活用についての講演を行いました。これは前回の堆肥の有効活用に続く研修です。 リン酸過剰土壌への緑肥の活用方法、京都市内の緑肥活用事例などを紹介しました。 具体的には、過剰なリン酸を緑肥によってどのように改善していくか、そして京都市内ではどのような緑肥の活用事例があるのかを解説しました。 より詳しい内容は「とらこ株式会社様で緑肥の活用についての話をさせて頂きました - 京都農販日誌」をご覧ください。

 

スギナは酸性土壌を好むらしい

/** Geminiが自動生成した概要 **/
スギナは酸性土壌を好み、活性アルミナが溶出し他の植物の生育を阻害するような環境でも繁茂する。これはスギナがケイ酸を多く吸収する性質と関係している可能性がある。酸性土壌ではケイ酸イオンも溶出しやすく、スギナはこれを利用していると考えられる。イネ科植物もケイ素を多く蓄積することで知られており、スギナも同様にケイ酸を吸収することで酸性土壌への適応を可能にしているかもしれない。また、スギナ茶を飲んだ経験や、土壌の酸性度に関する考察も述べられている。

 

幸せのアルサイクローバ

/** Geminiが自動生成した概要 **/
農道を移動中、道脇の草むらにクローバーを発見。よく見ると白クローバーではなく、白とピンク(薄紫)の花弁を持つアルサイクローバだった。緑肥として利用されることもあるアルサイクローバは、こぼれ種で自生したのだろうか?珍しい発見に喜びを感じた。クローバーは雑草として扱われることもあるため、このアルサイクローバが除草されないことを願う。

 

植物生育促進根圏細菌(PGPR)のこと

/** Geminiが自動生成した概要 **/
植物生育促進根圏細菌(PGPR)は、シデロフォアという物質を分泌し鉄イオンを吸収することで、他の微生物の鉄欠乏を引き起こし、土壌伝染病の発病を抑制する。PGPRの一種である枯草菌は、シデロフォア産生に加え、バイオフィルム形成を促進し、植物の発根やリン酸吸収を促す。健全な作物は二次代謝産物(フラボノイド)を分泌し、PGPRのバイオフィルム形成を誘導、病原菌の繁殖を抑え、自身は発根促進による養分吸収を高める好循環を生み出す。特定の緑肥作物でこの好循環を誘導できれば、土壌病害抑制に有効な可能性がある。

 

レンゲとアルファルファタコゾウムシ

/** Geminiが自動生成した概要 **/
マルチムギは、劣化した土壌の改善に効果的な緑肥です。土壌被覆による雑草抑制、線虫抑制効果、高い窒素固定能力を持ち、土壌微生物のエサとなる有機物を供給することで土壌構造を改善します。さらに、アレロパシー効果で雑草の発芽を抑え、土壌病害も抑制。線虫の増殖を抑制する働きも確認されています。他作物と比べて栽培管理の手間が少なく、痩せた土地でも生育可能なため、土壌改良に有効な選択肢となります。特に、連作障害対策や有機栽培への活用が期待されています。

 

アミノ酸生成菌が関与した黒糖肥料

/** Geminiが自動生成した概要 **/
黒糖肥料の流行の背景には、土壌微生物の餌としての役割がある。黒糖肥料はアミノ酸生成菌による発酵を利用しており、酵母を用いたアミノ酸合成研究との関連性が想起される。しかし、実際の製造過程で酵母が使用されているかは不明。一方、味の素のグルタミン酸製造はコリネバクテリウム属の細菌を用いており、黒糖肥料もこの技術を応用し、グルタミン酸抽出後の残渣を活用している可能性が高い。これは黒糖肥料のグルタミン酸含有量が多いことの説明となる。さらに、グルコースから脂肪酸合成を制限することでグルタミン酸合成を促進するメカニズムが紹介されている。

 

エノコロと師の言葉とアレロパシー

/** Geminiが自動生成した概要 **/
エノコロ(ネコジャラシ)が繁茂した畑は、次作の生育が良いという師の教えの背景には、エノコロのアレロパシー作用と土壌改善効果があると考えられる。エノコロはアレロケミカルを放出し、土壌微生物叢に影響を与える。繁茂したエノコロを刈り込み鋤き込むことで、土壌に大量のアレロケミカルが混入し、土壌消毒効果を発揮する。さらに、エノコロの旺盛な発根力は土壌の物理性を改善し、排水性・保水性を向上させる。これらの相乗効果により、病原菌を抑え、有益な微生物が優位な環境が形成され、次作の生育が促進されると考えられる。稲わらから枯草菌が発見されたように、エノコロわらにも有益な細菌が存在する可能性がある。

 

とあるマメのアレロケミカルの話

/** Geminiが自動生成した概要 **/
この記事では、ハッショウマメ(ムクナ)というマメ科植物のアレロパシー作用について解説しています。ハッショウマメはL-ドパという物質をアレロケミカルとして分泌します。L-ドパは神経伝達物質ドーパミンやアドレナリンの前駆体で、広葉雑草の生育阻害や昆虫の殻の硬化阻害といった作用を持ちます。人間は体内でチロシンからL-ドパを合成できるため、摂取の必要はありません。アレロパシーに関する書籍「植物たちの静かな戦い」も紹介されており、農業における緑肥活用の可能性を示唆しています。関連として、ヒルガオ科植物の強さについても言及されています。

 

イネ科緑肥の再考のアレロパシー編

/** Geminiが自動生成した概要 **/
ネギとマルチムギ(コムギ)の混作で、劣悪土壌の改善、アザミウマ防除、ネギ生育向上に成功した事例から、コムギのアレロパシー物質DIMBOAに着目。DIMBOAは広範囲の病原体への抗生物質だが、土壌への吸着で活性を失う可能性がある。そこで、緑肥マルチムギの効果を高める施肥設計を提案。次作の基肥と共に堆肥を投入し、緑肥の生育環境を整える。さらに、黒糖肥料を追肥することで、糖供給によるDIMBOAの土壌吸着促進と、アミノ酸・金属による成長促進を図る。つまり、緑肥を衰退した環境に植えるのではなく、堆肥と黒糖肥料で積極的に生育を促し、アレロパシー効果を最大限に活かす戦略。同時に、コウジカビがアレロケミカルを宿主にとって無毒で有益な物質に変換する可能性にも言及。

 

エンバクのアレロパシー

/** Geminiが自動生成した概要 **/
エンバクは緑肥として利用され、根からクマリン類のスポコレチンを分泌することでアレロパシー作用を示す。スポコレチンはフェニルプロパノイド系化合物で、プラントボックス法で分泌が確認されている。この作用を利用すれば、雑草抑制効果が期待できる。エンバクのアレロパシー作用に着目し、他感作用後の栽培活用についても考察が進められている。

 

ニセアカシアのアレロパシー

/** Geminiが自動生成した概要 **/
ニセアカシアはアレロパシー物質としてカテキンを分泌する。土壌中の有機物や粘土鉱物に吸着され活性を失うが、これはコウジカビがフミン酸を合成し土壌中のアルミニウムと結合する話と関連するのではないか、という考察。ニセアカシアのカテキンは土壌改良に繋がる可能性があり、コウジカビにとっても養分獲得に有利になるかもしれない。加えて、ニセアカシアはシアナミドも分泌する。

 

シアナミドは土壌の細菌にも効果があるのか?

/** Geminiが自動生成した概要 **/
シアナミドは石灰窒素の主成分で、土壌消毒効果が期待される。酵母のような真核生物だけでなく、細菌にも効果があることが示唆されている。石灰窒素は酸化還元酵素や脱水素酵素を阻害することで、幅広い微生物に影響を与える。ヘアリーベッチはシアナミドを分泌するとされているが、根粒菌との共生など、根圏微生物への影響は限定的であると考えられる。つまり、シアナミド分泌は選択的に行われている可能性があり、そのメカニズムの解明が今後の課題となる。

 

石灰窒素の作用機序

/** Geminiが自動生成した概要 **/
ヘアリーベッチの土壌消毒効果のメカニズムを探るため、その根から分泌されるシアナミドの作用機序に着目。シアナミドは石灰窒素の有効成分で、人体ではアルデヒドデヒドロゲナーゼを阻害し、アセトアルデヒドの蓄積による悪酔いを引き起こす。アセトアルデヒドはDNAと結合し、タンパク質合成を阻害することで毒性を発揮する。この作用は菌類にも影響を及ぼし、土壌消毒効果につながると考えられる。

 

土壌消毒として緑肥の栽培はどうか?

/** Geminiが自動生成した概要 **/
ヘアリーベッチは、窒素固定に加え、アレロパシー作用で雑草を抑制する緑肥です。根から分泌されるシアナミドが雑草種子の休眠を打破し、時期外れの発芽を促して枯死させる効果があります。シアナミドは石灰窒素の成分であり、土壌消毒にも利用されます。裏作でヘアリーベッチを栽培すれば、土壌消毒と土壌改良を同時に行え、後作の秀品率向上に繋がると考えられます。さらに、ヘアリーベッチは木質資材の分解促進効果も期待できるため、播種前に安価な木質資材をすき込むことで、土壌改良効果とシアナミド分泌量の増加が期待できます。この手法は従来の太陽光と石灰窒素による土壌消毒より効果的かもしれません。今後の課題は、シアナミドの作用点と、効果のない土壌微生物の特定です。

 

エンドウの寒さへの強さの秘密はどこにあるのかい?

/** Geminiが自動生成した概要 **/
道端のカラスノエンドウなどのマメ科植物は、真冬でも旺盛に生育している。11月頃から線路の敷石の間などから芽生え、1月後半の寒さの中でも葉を茂らせ、巻きひげを伸ばして成長を続けている。 なぜエンドウやソラマメはこのような寒さに耐えられるのか? 考えられるのは、密集した葉によって代謝熱を閉じ込めていること、あるいは低温でも機能する葉緑素を持っていることだ。 いずれにせよ、この寒さへの強さは、緑肥としての利用価値の高さを示唆している。葉物野菜が低温下で甘くなるのと同様に、エンドウも厳しい環境に適応するための独自のメカニズムを備えていると言えるだろう。

 

ポリフェノール鉄錯体と酸素供給剤で青枯病の発生を抑制

/** Geminiが自動生成した概要 **/
コーヒー粕を活用した青枯病抑制法が研究で示された。コーヒー粕に含まれるコーヒー酸と二価鉄がポリフェノール鉄錯体を形成し、過酸化カルシウムと反応することで強力な活性酸素(・OH)を発生させる。この活性酸素が青枯病菌を殺菌する。過酸化水素ではなく過酸化カルシウムを用いることで効果が高まる点が注目される。コーヒー酸は多くの植物に含まれ、二価鉄も腐植酸鉄として入手可能。土壌への影響は懸念されるものの、青枯病対策として期待される。この方法は土壌消毒としての効果があり、青枯病菌以外の有益な菌への影響は限定的と考えられる。

 

シデロフォアから見る鉄不足に陥るところ

/** Geminiが自動生成した概要 **/
鶏糞堆肥の多用は、高EC、高石灰、高リン酸を引き起こし、植物のミネラル吸収を阻害する。特に高石灰は鉄の吸収を妨げ、光合成の質を低下させる。石灰質土壌では、イネ科植物は鉄不足に対抗するため、植物シデロフォアを分泌して鉄を吸収するストラテジーⅡ型を持つ。鶏糞堆肥とイネ科緑肥の組み合わせは、緑肥が土壌中の鉄を有効化し貯蔵することで、鶏糞堆肥のデメリットを補う有効な手段となる可能性がある。つまり、イネ科緑肥は過剰な石灰による鉄欠乏を防ぎ、健全な生育を促進する役割を果たす。

 

京都八幡の渋谷農園さんの研修会で緑肥についての話をしました

/** Geminiが自動生成した概要 **/
京都八幡の渋谷農園での3回目の社内研修会で、緑肥について講演を行いました。土壌分析に基づく施肥設計や基肥・追肥の話に続き、今回は緑肥を用いた余剰肥料分の回収と栽培環境改善について解説しました。「良い土とは?」を考えるきっかけを提供することで、土づくりへの意識向上に貢献できれば幸いです。

 

植物はカルシウムを使って体を丈夫にする

/** Geminiが自動生成した概要 **/
植物は細胞壁の強化にカルシウムを利用するが、イネ科植物はカルシウム含量が低い。これは、ケイ素を利用して強度を確保しているためと考えられる。細胞壁はセルロース、ヘミセルロース、ペクチン、リグニンで構成され、ペクチン中のホモガラクツロナンはカルシウムイオンと結合しゲル化することで、繊維同士を繋ぎ強度を高める。しかし、イネ科植物はケイ素を吸収し、細胞壁に沈着させることで強度を高めているため、カルシウムへの依存度が低い。この特性は、カルシウム過剰土壌で緑肥として利用する際に有利となる。

 

京都八幡の渋谷農園さんの研修会で基肥と追肥についての話をしました

/** Geminiが自動生成した概要 **/
京都八幡の渋谷農園での研修会で、基肥と追肥について講演しました。前回に続き、京都農販の非常勤として招かれました。肥料袋の成分表示の見方(水溶性、く溶性)を解説し、基肥と追肥における活用の仕方を説明しました。次回の研修会では、前作の肥料過多対策として緑肥の活用法について話す予定です。

 

グラスエンドファイトと天敵でヨトウの被害を減らせるか?

/** Geminiが自動生成した概要 **/
イネ科緑肥、特にペレニアルライグラスの活用によるヨトウムシ防除の可能性について考察している。ペレニアルライグラスに共生するグラスエンドファイトのアルカロイドはヨトウムシへの効果が不明なため、ヨトウムシの天敵に着目。農研機構の研究では、ネギ栽培におけるムギの間作が、クモやカメムシなどの天敵を呼び寄せ、ヨトウムシ防除に効果があったと報告されている。これを踏まえ、作物へのヨトウムシの到達を防ぐために、天敵が住み着くムギの間作が有効だと結論づけている。ペレニアルライグラスは多湿に弱く窒素要求量が多いため、通路ではなく圃場の周囲に植えるのが適切であると考え、通路にはマルチムギ、周囲にはペレニアルライグラスという二段構えの防除体系を提案している。

 

グラスエンドファイトのアルカロイドに頼りたい

/** Geminiが自動生成した概要 **/
ライムギは麦角菌に感染しやすく、菌が産生する麦角アルカロイドにより麦角中毒を引き起こす。中毒症状は壊疽型と痙攣型に分類され、深刻な健康被害をもたらす。中世ヨーロッパでは「聖アントニウスの火」と呼ばれ恐れられた。現代では品種改良や栽培管理により麦角中毒は減少したが、ライムギは依然として麦角菌の宿主となる可能性がある。家畜への飼料にも注意が必要で、感染したライムギは家畜にも中毒症状を引き起こす。そのため、ライムギの栽培・利用には麦角菌への感染リスクを考慮する必要がある。

 

グラスエンドファイトとヨトウ

/** Geminiが自動生成した概要 **/
ヨトウムシの食害が深刻な中、グラスエンドファイトという菌類に着目した。内生菌の一種であるグラスエンドファイトに感染したホソムギ(イタリアンライグラス)は、ヨトウムシの生育を抑制する効果があることが『基礎から学べる菌類生態学』で紹介されている。ヨトウムシは種類によってはイネ科を摂食しないため、全てのヨトウ対策に有効かは不明だが、イタリアンライグラス周辺を産卵場所としない可能性があり、幼虫の大移動を防げるかもしれない。農業への応用はまだ研究段階だが、グラスエンドファイトに関する翻訳本でさらに詳しく調べてみる。

 

稲作からダイズ転作へ

/** Geminiが自動生成した概要 **/
水田の減反政策において、大豆への転作は排水性の問題から二作目以降の不作につながりやすい。大豆は水はけの良い土壌を好み、水田の排水性を高める改修は元に戻すのが困難なため、転作後も水田の状態が維持されることが原因の一つである。 解決策として、大豆の畝間にイネ科の緑肥(マルチムギなど)を栽培する方法が考えられる。マルチムギの根は酸素を放出するため、大豆の生育に必要な酸素供給源となる可能性があり、水田の鋤床層を壊さずに大豆栽培に適した環境を作れる。また、大豆は窒素固定能力を持つため、マルチムギとの共存で肥料管理に大きな変更は必要ない。ただし、収穫機械の対応状況は確認が必要となる。

 

畑作の間に稲作をかますということ

/** Geminiが自動生成した概要 **/
イネ科緑肥は、土壌改良効果が期待される一方で、窒素飢餓や線虫被害といった問題も引き起こす可能性がある。その効果は土壌の状態や緑肥の種類、すき込み時期によって大きく変動する。窒素飢餓は、緑肥の分解に伴う微生物の活動による窒素消費が原因で、イネ科緑肥は炭素率が高いため特に起こりやすい。線虫被害は、特定のイネ科緑肥が線虫を増加させる場合があるため、種類選定が重要となる。効果的な利用には、土壌分析に基づいた緑肥の選定、適切なすき込み時期の決定、必要に応じて窒素肥料の追肥などの対策が必要となる。また、緑肥以外の土壌改良資材との併用も有効な手段となり得る。

 

風よけとしての緑肥

/** Geminiが自動生成した概要 **/
ソルガムは土壌改良に優れた緑肥で、強靭な根と高い背丈、C4型光合成によるCO2固定量の多さが特徴です。酸性土壌や残留肥料にも強く、劣化した土壌の改善に役立ちます。畑の周囲にソルガムを植えるのは、バンカープランツとして害虫を誘引し、天敵を呼び寄せる効果を狙っている可能性があります。鳥取砂丘では、風よけや肥料流出防止のためオオムギを周囲に植える慣習があります。ソルガムも同様に、強風や台風対策として風よけ、CO2固定、根による土壌安定化に有効かもしれません。これらの効果は、近年の気象変動への対策として期待されます。

 

窒素欠乏下で奮闘する光合成細菌たち

/** Geminiが自動生成した概要 **/
塩類集積地のような過酷な環境でも、藍藻類は光合成と窒素固定を通じて生態系の基盤を築く。藍藻は耐塩性が高く、土壌表面にクラストを形成することで、他の生物にとって有害な塩類濃度を低下させる。同時に、光合成により酸素を供給し、窒素固定によって植物の生育に必要な窒素源を提供する。これらの作用は土壌構造を改善し、水分保持能力を高め、他の植物の定着を促進する。藍藻類の活動は塩類集積地の植生遷移の初期段階において重要な役割を果たし、最終的には植物群落の形成に繋がる。このように、藍藻類は過酷な環境を生命が繁栄できる環境へと変える重要な役割を担っている。

 

イネ科緑肥の効果、再考の再考

/** Geminiが自動生成した概要 **/
ネギの通路にマルチムギを緑肥として栽培することで、土壌への酸素供給が向上し、ネギの生育が促進される可能性が示唆されている。ムギはROLバリアを形成しないため、根から酸素が漏出し、酸素要求量の多いネギの根に供給される。特に、マルチムギの密植とネギの根の伸長のタイミングが重なることで、この効果は最大化される。マルチムギは劣悪な土壌環境でも生育できるため、土壌改良にも貢献する。この方法は、光合成量の増加、炭素固定、排水性・根張り向上といった利点をもたらし、今後の気候変動対策としても有効と考えられる。栽培初期は酸素供給剤も併用することで、更なる効果が期待できる。

 

良い土にはふんだんに酸素が入るもの

/** Geminiが自動生成した概要 **/
良い土壌には酸素が豊富だが、拡散だけで十分に行き渡るのか疑問だった。ROL(根からの酸素漏出)という概念が解決策を与えてくれた。酸素は植物の茎葉から根へ運搬され、ROLによって土壌へ拡散される。良い土壌では植物の根量が増え、ROLも増加するため、土壌への酸素供給も増える。この考え方は、京都でネギとマルチムギを高密度栽培した成功例にも説明を与え、根からの酸素供給が土壌環境改善に大きく貢献している可能性を示唆する。

 

切り株の内部を果敢に攻める草たち

/** Geminiが自動生成した概要 **/
公園の切り株から生えた草の芽生えに注目した筆者は、その生育環境について考察している。切り株はC/N比の高い木質堆肥のような状態で、通常は植物の生育には厳しい環境である。しかし、隣の木と繋がっている切り株の根は生きている可能性があり、そこに草の根が到達すれば養分豊富な環境となる。さらに、草の根が切り株内部を物理的に貫通することで、木の分解を促進する役割も担っていると考えられる。つまり、一見厳しい環境でも、草は切り株と相互作用しながら巧みに生育しているのだ。

 

C4型光合成の二酸化炭素濃縮

/** Geminiが自動生成した概要 **/
C4植物はCO2濃縮メカニズムにより高い光合成速度を達成する。CO2は葉肉細胞で炭酸脱水酵素(CA)の働きで炭酸水素イオンに変換され、リンゴ酸として貯蔵される。このCO2濃縮により、光合成の律速となるCO2不足を解消する。CAは亜鉛を含む金属酵素で、CO2と水の反応を促進する役割を持つ。C4植物のソルガムを緑肥として利用する場合、亜鉛の供給がC4回路の効率、ひいては植物の生育に影響を与える可能性がある。この亜鉛の重要性は、畑作の持続可能性を考える上で重要な要素となる。

 

畑作を続けることは難しい-前編

/** Geminiが自動生成した概要 **/
ネギの連作障害について、施肥設計の見直しによる発根量の向上で土壌環境の改善を目指したが、極端な連作では効果が見られなかった。病原菌の増加以外に、収穫時の養分持ち出しに着目。NPKなどの主要要素以外に、マンガン(Mn)や銅(Cu)などの微量要素の不足が連作障害に関与している可能性を考察し、次編へ続く。

 

発根に関することをまとめてみると

/** Geminiが自動生成した概要 **/
名古屋大学の研究チームは、植物ホルモン・オーキシンが植物の発根を促進する詳細なメカニズムを解明しました。オーキシンは、植物の細胞壁を緩める酵素を活性化させることで発根を促進します。 具体的には、オーキシンが細胞内の受容体と結合すると、特定の転写因子が活性化されます。この転写因子は、細胞壁を分解する酵素群の遺伝子の発現を促し、細胞壁を緩めます。これにより細胞の伸長が起こりやすくなり、発根が促進されることが分かりました。この発見は、発根を制御する農薬の開発に貢献する可能性があります。

 

続・栽培と畜産の未来のために補足

/** Geminiが自動生成した概要 **/
客土に川砂を入れることで、水はけ改善だけでなく、ミネラル供給という大きなメリットがある。特に、農業で酷使された土壌はカリウムが不足しがちで、カリウムは他の微量要素を溶脱させるため、結果的に植物の生育に必要な様々なミネラルが欠乏する。川砂は岩石の風化物であり、様々なミネラルを含んでいるため、これを客土に混ぜることで不足したミネラルを補給できる。つまり、川砂は単なる土壌改良材ではなく、天然のミネラル肥料としての役割も果たすと言える。河川の浚渫土砂は処分に困る場合も多いが、農業利用することで資源の有効活用にも繋がる。

 

続・栽培と畜産の未来のために

/** Geminiが自動生成した概要 **/
白色腐朽菌はリグニンを分解する能力を持つが、トリコデルマ菌と競合するとリグニンの分解が抑制される。これは、トリコデルマ菌が白色腐朽菌の生育を阻害する抗生物質を産生するためである。一方、堆肥化過程で白色腐朽菌が優占すると、トリコデルマ菌の増殖は抑制される。つまり、堆肥化におけるリグニンの分解効率は、白色腐朽菌とトリコデルマ菌の拮抗作用によって左右される。木質資材と家畜糞を組み合わせた場合、両菌のバランスが変化し、リグニンの分解が抑制される可能性があるため、この点に注意が必要だ。

 

アーバスキュラ菌根菌が好む環境を探る

/** Geminiが自動生成した概要 **/
アーバスキュラ菌根菌は、リン酸などの養分吸収を助けるため、共生関係を築ける環境作りが重要。土壌に水溶性養分や糖分が多いと共生しにくいため、過剰な施肥は避けるべき。ネギの菌根菌はネギだけでなく緑肥とも共生するため、除草剤で全て除去するのではなく、通路などに緑肥を栽培すると共生菌が増加。クローバーの根圏は共生菌が豊富との報告もあり、緑肥は土壌の物理性改善だけでなく肥料効率向上にも貢献する可能性がある。

 

大気中の温室効果ガスを減らしたい

/** Geminiが自動生成した概要 **/
地球温暖化による猛暑や水害増加への対策として、土壌への二酸化炭素固定が提案されている。従来のNPK肥料中心の土壌管理から脱却し、木質資材由来の堆肥を用いて土壌中に無定形炭素(リグノイド)を蓄積することで、粘土鉱物と結合させ、微生物分解を抑制する。これにより土壌への二酸化炭素固定量を増やし、植物の光合成促進、ひいては大気中二酸化炭素削減を目指す。家畜糞堆肥は緑肥育成に限定し、栽培には木質堆肥を活用することで、更なる根量増加と光合成促進を図る。キノコ消費増加による植物性堆肥生産促進や、落ち葉の焼却処分削減も有効な手段として挙げられている。

 

ツユクサの季節

/** Geminiが自動生成した概要 **/
ミカン栽培跡地にマルバツユクサが生育している。マルバツユクサは九州の果樹園で防除困難な雑草として知られる。ツユクサ科の特徴である葉鞘を持ち、単子葉植物に分類される。単子葉植物は葉柄がなく、葉鞘を持つ。また、不定根による発根が特徴で、土壌変化に大きく貢献する。ミカン栽培跡地では、ツユクサの生育により、植物全般が育ちやすい土壌へと急速に変化している可能性が示唆される。

 

イネ科とマメ科の緑肥の混播

/** Geminiが自動生成した概要 **/
イネ科とマメ科の緑肥混播は、土壌改良に効果的である。荒れた土地での緑肥栽培で、エンバクとアルサイクローバの混播が成功した事例が紹介されている。アルサイクローバはシロクローバとアカクローバの中間的な性質を持ち、側根が繁茂しやすい。この混播により、クローバが土壌を覆い、エンバクがその間から成長することで、相乗効果が生まれた。 ハウスミカン栽培においては、落ち葉の分解が進まない問題があり、土壌中の菌が少ないことが原因と考えられる。木質資材とクローバの組み合わせが有効だが、連作によるEC上昇が懸念される。そこで、EC改善効果を持つイネ科緑肥とクローバの混播が有効と考えられる。

 

エンドファイトと呼ばれる菌たち

/** Geminiが自動生成した概要 **/
エンドファイトは植物体内で共生する菌類で、植物に様々な利益をもたらします。植物は光合成産物を菌に提供する代わりに、菌は土壌から吸収しにくいリン酸やアミノ酸などを植物に供給します。さらに、エンドファイトは植物の免疫系を刺激し、病原菌への抵抗力を高め、発根も促進します。中には、植物を昆虫から守る物質や窒素を固定する菌も存在します。 しかし、エンドファイトとの共生は、一般的な栽培環境では難しいようです。共生菌は多様な植物が生育する環境に多く存在し、栽培土壌には少ない傾向があります。また、土壌中に硝酸態窒素やショ糖が豊富にあると、共生関係が成立しにくいこともわかっています。そのため、水溶性窒素を含む堆肥での土作りは、エンドファイトとの共生を阻害する可能性があります。さらに、エンドファイトと植物の共生関係には相性があり、すべての植物が共生できるわけではありません。

 

ハウスミカンの木の下には腐朽菌がいないのか?

/** Geminiが自動生成した概要 **/
ハウスミカンの落ち葉が分解されないのは、単一作物の連作で微生物の多様性が失われ、白色腐朽菌が不足しているためと考えられる。外部資材にキノコが生えたのは、資材に腐朽菌が苦手とする成分が含まれていたとしても、ハウス内に腐朽菌が少ないためである。解決策は、腐朽菌を含む資材で落ち葉を覆い、更にクローバを播種して腐朽菌の活動を促進することだ。しかし、土壌の排水性低下とEC上昇により、クローバの生育が懸念される。

 

株式会社エヌエスHATAKEファームさん向けに施肥設計の話をしました

/** Geminiが自動生成した概要 **/
パクチー等を栽培する株式会社エヌエスHATAKEファームに対し、京都農販が施肥設計に関する説明会を実施した。ベビーリーフなどを扱うHATAKEカンパニー(旧社名)向けに、普段から提案している基肥設計の考え方や、秀品率向上に繋がる施肥設計のポイントを解説。農薬防除の回数削減にも繋がる施肥設計見直しや緑肥の効果についても言及した。今回の説明会の内容が、同社のパクチー栽培における秀品率向上に貢献することが期待される。

 

大震災の姿を残す野島断層

/** Geminiが自動生成した概要 **/
淡路島の研修会後、阪神・淡路大震災の爪痕を残す野島断層保存館を訪れた。天然記念物に指定されたこの断層は、地震の威力を体感できる貴重な場所だ。館内では、保存された断層と共に地震に関する様々な展示があり、その説得力は強烈だ。 筆者は、恐怖に対しては知ることが重要だと考えている。野島断層のような場所を訪れることで、地震のメカニズムや防災への意識を高めることができる。備蓄だけでなく、安全な避難経路の確認など、具体的な行動につなげられるからだ。地震の恐ろしさを知ることで、日頃の備えの大切さを改めて実感できる、貴重な体験となった。

 

淡路島のアイ・エス・フーズさんの社内研修で予防と緑肥の活用の話をしました

/** Geminiが自動生成した概要 **/
兵庫県南あわじ市のアイ・エス・フーズの社内研修で、京都農販が予防と緑肥活用の講演を行いました。病気予防に有効な肥料と、京都市内で実績のある緑肥の活用法を紹介。施肥設計の見直しによる農薬削減、イネ科緑肥の効果について解説しました。アイ・エス・フーズは淡路島で青葱を生産する企業で、過去にも肥料に関する勉強会を開催しています。今回の研修が、同社の秀品率向上に貢献することが期待されます。

 

イネ科緑肥の効果、再考

/** Geminiが自動生成した概要 **/
露地ネギの畝間に緑肥マルチムギを導入したところ、ひび割れ多発土壌が改善し、ネギの生育も向上した。ひび割れの原因は腐植不足と水溶性成分蓄積(高EC)だが、マルチムギはこれらの問題を解決する。マルチムギは活性アルミナを無害化し、養分を吸収、土壌を柔らかくして排水性を向上させる。これにより、作物の発根が促進され、高EC土壌でも生育が可能になる。マルチムギとの養分競合も、基肥を発根促進に特化し、NPKを追肥で施すことで回避できる。結果として、発根量の増加は微量要素の吸収を促し、病害虫への抵抗性向上に繋がる。

 

マルチムギが劣化土壌に果敢に挑む

/** Geminiが自動生成した概要 **/
肥料の過剰供給による土壌劣化と、それに伴うスギナ繁茂、ひび割れ、保水力低下といった問題を抱えた畑で、マルチムギ導入による土壌改善を試みた事例を紹介。 休ませることのできない畑で、連作と速効性肥料により土壌が悪化し、アルミニウム障害を示唆するスギナが蔓延していた。ネギの秀品率も低下するこの畑で、マルチムギを栽培したところ、スギナが減少し始めた。 マルチムギは背丈が低いためネギ栽培の邪魔にならず、根からアルミニウムとキレート結合する有機酸を分泌する可能性がある。これにより、土壌中のアルミニウムが腐植と結合し、土壌環境が改善されることが期待される。加えて、マルチムギはアザミウマ被害軽減効果も期待できる。

 

ひび割れ環境でなんとか伸長したけれど

/** Geminiが自動生成した概要 **/
ひび割れた過酷な土壌環境で、ノゲシやタネツケバナは stunted growth を示し、タネツケバナはアブラムシに覆われていた。これは、植物が周囲の環境を変えながら成長するとはいえ、厳しい環境では成長が阻害され、地力回復も期待できないことを示唆する。ひび割れた畑の休耕は、雨水による除塩以外に効果が薄く、植物が生育できる環境を整えることが重要となる。具体的には、休耕前に植物性の有機物を投入し、排水性と保水性を改善することでひび割れを解消し、植物の生育を促進、除塩や土壌改良を進める必要がある。写真に写る植物たちの状態は、休耕だけでは地力回復が難しいことを示す明確な証拠である。

 

栽培環境は草達が教えてくれる

/** Geminiが自動生成した概要 **/
土壌改良の指標として、特定の雑草の植生変化が有効である。酸性土壌を好むヤブガラシが減少し、微酸性〜中性の土壌を好むシロザ、ホトケノザ、ナズナ、ハコベが増加した場合、土壌pHが改善され、理想的なpH6.5に近づいている可能性が高い。これは、土壌シードバンクの考え方からも裏付けられる。 土壌pHの安定化は、炭酸塩施肥や植物性堆肥の蓄積によって実現するが、特に後者は土壌改良の他の要素向上にも繋がるため、植生変化は精度の高い指標となる。加えて、シロザは次世代の緑肥としても有望視されている。

 

バリダマイシンAのポテンシャル

/** Geminiが自動生成した概要 **/
バリダマイシンAは、トレハロース分解阻害による殺菌作用を持つ農薬だが、植物の抵抗性(SAR)も誘導する。ネギ等の切断収穫後の消毒に慣習的に用いられるが、これはSAR誘導による予防効果と合致する。SAR誘導剤であるプロベナゾールと同様に、バリダマイシンAもサリチル酸の上流で作用すると推定される。植物の免疫は防御タンパク質の合成によるもので、農薬に頼る前に栽培環境や施肥を見直すことが重要である。適切な施肥設計と緑肥活用による土壌環境調整は、農薬の使用回数削減に繋がる。

 

こと京都さんの社内研修で病気の予防の話をしました

/** Geminiが自動生成した概要 **/
京都農販は、こと京都の社内研修でネギの軟腐病予防について講演しました。こと京都からの要望は、ネギ軟腐病予防に関する最新の研究論文に基づいた情報の提供でした。 講演では、軟腐病菌の侵攻阻止メカニズムと、有効な予防薬がない現状における肥料の活用や植物生理、特にシグナルの理解の重要性を強調しました。防御ホルモンであるサリチル酸に着目し、植物の抵抗性を高める戦略についても解説しました。現在、京都のネギ栽培に適した農薬は認可されておらず、肥料の効果的な活用や植物シグナルの操作による効率的な予防法の開発が今後の課題となっています。

 

植物由来のケイ酸塩鉱物、プラント・オパール

/** Geminiが自動生成した概要 **/
イネ科植物は土壌から吸収したシリカを体内に蓄積し、強度を高める。枯死後、このシリカはプラント・オパールというケイ酸塩鉱物として土壌中に残る。プラント・オパールは土壌の団粒構造形成に重要な役割を果たすと考えられている。特にソルゴーは緑肥として有効で、強靭な根で土壌を破砕し、アルミニウム耐性により根から有機酸を分泌してアルミニウムを無害化する。枯死後はプラント・オパールとなり、活性化したアルミニウムを包み込み、団粒構造形成を促進する可能性がある。

 

こと京都さんの社内研修で物理性の向上と緑肥の話をしました

/** Geminiが自動生成した概要 **/
こと京都株式会社の社内研修で、京都農販と共に土壌物理性の向上と緑肥について講演しました。前回の施肥設計の話に続き、各地で得た知見を共有。施肥前に土壌物理性を改善することで、施肥効率を高め、病気発生率を抑制、秀品率向上と経費削減を目指します。具体的には、物理性の改善で施肥の効果を最大限に引き出し、病気を減らすことで、質の良い農作物を増やしつつ、コストを抑えることを目指しています。

 

酸性土壌で生きる植物たち

/** Geminiが自動生成した概要 **/
酸性土壌で問題となるアルミニウム毒性に対し、植物は様々な耐性機構を持つ。岡山大学の研究では、コムギがリンゴ酸輸送体(ALMT)を用いてリンゴ酸を分泌し、アルミニウムをキレート化することで無毒化していることを示している。しかし、全ての植物が同じ機構を持つわけではない。Nature Geneticsに掲載された研究では、ソルガムがクエン酸排出輸送体(MATE)を用いてクエン酸を分泌し、アルミニウムを無毒化していることが明らかになった。このクエン酸によるアルミニウム無毒化は、ソルガムの酸性土壌への適応に大きく貢献していると考えられる。この知見は、酸性土壌での作物栽培に役立つ可能性がある。

 

乾燥ストレスから再び牛糞堆肥による土作りの価値を問う

/** Geminiが自動生成した概要 **/
牛糞堆肥の土作りにおける価値を、乾燥ストレスと高塩ストレスの観点から再考する。植物は乾燥/高塩ストレスによりプロリンを合成し、これが虫の食害を誘発する。牛糞堆肥は硝酸態窒素や塩分を多く含み、ECを高め高塩ストレスを招き、結果的にプロリン合成を促進、虫を引き寄せる。また、プロリン合成の材料となる硝酸根も供給するため、一見健全な成長を促すが、実際は虫害リスクを高めている。つまり、窒素過多や牛糞堆肥過剰施用で虫害が増えるのは、高塩ストレスによるプロリン合成促進が原因と考えられる。

 

宮城県遠田郡涌谷町のうじいえ農場さんの社内勉強会で土壌の物理性の改善の話をしました

/** Geminiが自動生成した概要 **/
宮城県涌谷町のうじいえ農場で、京都農販による土壌物理性と緑肥選定に関する社内勉強会が行われた。土壌物理性の改善に着目し、植物の根の生育と土壌への影響、土壌に適した緑肥の選び方などを解説。うじいえ農場では昨年から緑肥活用を開始しており、今回の勉強会は実践的な内容に重点を置いた。様々な文献に基づき、土壌の粘土や腐植、植物の種類による影響を踏まえ、効果的な緑肥選定のポイントを伝授した。

 

草はアスファルトのちょっとした隙間を常に狙っている

/** Geminiが自動生成した概要 **/
廃道となったアスファルトの隙間から伸びる草の生命力に注目し、自然の力強さを描いています。道路の縁、修繕跡、ひび割れといった僅かな隙間に根を下ろし、アスファルトを徐々に弱らせていく様子から、人工物もいずれ自然に還るという事実を考察しています。アスファルトの原料が石油の残油であることをWikipediaで調べ、それが太古の生物の死骸由来であることに思いを馳せ、道路が死骸の油で覆われているという少しホラーな視点も提示しています。そして、人工物も自然由来の原料から作られていることを再認識し、アスファルトに挑む草の種類をイネ科かカヤツリグサ科と推測しています。最後に関連として緑肥に関する記事へのリンクを掲載しています。

 

京都八幡の渋谷農園さん主催の勉強会で病気の感染と肥料の副作用の話をしました

/** Geminiが自動生成した概要 **/
渋谷農園主催の勉強会にて、京都農販による病気感染と肥料副作用についての講演が行われた。過去2回の勉強会では、土壌の化学性を安定させる基肥の選定、緑肥による土壌の物理性・化学性向上について解説。今回は、効果的だが副作用も持つ肥料について掘り下げ、一連の勉強会でベストプラクティスを網羅的に伝えた。即効性はないかもしれないが、将来的に栽培技術向上に繋がることで、秀品率向上と経費削減に貢献することが期待される。

 

緑肥を活用する意義

/** Geminiが自動生成した概要 **/
緑肥を活用する意義は、土壌の改良にあります。栽培後に勝手に生える草では、土壌が未熟な段階では効果的な緑肥にはなりません。レンゲ米のように、意図的にマメ科植物を育ててすき込むことで、土壌に栄養を供給できます。勝手に生える草は、ロゼット状に地面を覆ってしまい、成長しても緑肥効果は低いです。ナズナやタネツケバナのように、小型で早く開花してしまう草も多いです。土壌生産性を向上させるには、冬に強い植物を選抜して緑肥として活用する方が効果的です。しかし、自然の生態系には未知の要素もあるため、勝手に生える草の群生にも何らかの意味がある可能性も考慮すべきです。

 

余分な養分は緑肥に吸わせろ。石灰過多の場合

/** Geminiが自動生成した概要 **/
土壌分析で高ECやリン酸過剰を示した場合、緑肥を栽培しすき込むことで改善が見込まれる。緑肥は土壌に高密度で根を張り巡らせ、リン酸などを吸収する。すき込み後は団粒構造の形成に寄与し、過剰分の悪影響を軽減する。しかし、炭酸石灰については、緑肥によって消費されるものの、植物体内でカルシウムは繊維質強化や酵素活性に利用され、最終的には土壌中に戻ってしまう。ミミズの働きで炭酸塩として再固定されるため、窒素やリン酸ほど顕著な減少は見られない。ただし、緑肥栽培による土壌物理性の向上、特に排水性向上により、過剰なカルシウムイオンが土壌深層へ移動する可能性がある。緑肥栽培は、硫酸石灰過多にも効果が期待できる。物理性の向上は、様々な土壌問題の解決に繋がる。

 

余分な養分は緑肥に吸わせろ。リン過剰の場合

/** Geminiが自動生成した概要 **/
鳥取砂丘の未熟土壌での栽培は、保水性・保肥性の低さ、強風、高温といった厳しい環境への対策が必要となる。著者は、砂丘地帯の傾斜を利用した雨水貯留、海藻堆肥による土壌改良、風除けのためのヒマワリ栽培、さらにマルチや緑肥の活用で土壌環境の改善に取り組んでいる。 具体的には、傾斜下部に穴を掘り雨水を貯め、乾燥しやすい砂地へ供給。海藻堆肥は保水性向上だけでなく、ミネラル供給源としても機能する。ヒマワリは風除け、緑肥となり、土壌有機物の増加にも貢献。マルチは地温と水分を安定させる。 これらの工夫により、砂丘地帯でも作物を栽培できる可能性を示唆している。しかし、砂丘の不安定な性質、肥料流亡のリスクなど、更なる研究と改善が必要である。

 

京都八幡の渋谷農園さん主催の勉強会で土壌の物理性と緑肥の話をしました

/** Geminiが自動生成した概要 **/
京都八幡の渋谷農園主催の勉強会で、京都農販が土壌の物理性と緑肥選定について講演しました。土壌物理性は粘土、腐植、植物により変化し、植物の根の生育が土壌に影響を与えることを説明。土壌に合わせた緑肥選定のポイントを解説しました。緑肥の効果は使用者によって大きく異なるため、期待する効果と実際の効果のミスマッチを減らす重要性を強調しました。 関連記事「緑肥を使いこなす」では、緑肥の効果的な活用法を紹介しています。緑肥の種類による特性の違い、土壌への影響、栽培方法などを解説し、緑肥の効果を最大限に引き出すためのポイントをまとめています。緑肥は土壌改良だけでなく、雑草抑制や病害虫対策にも有効で、持続可能な農業を目指す上で重要な役割を果たします。

 

余分な養分は緑肥に吸わせろ。高ECの場合

/** Geminiが自動生成した概要 **/
植物は光合成で得た糖を、繊維質であるセルロースやヘミセルロース、リグニンの合成に利用する。セルロースはグルコースが直鎖状に結合したもので、植物の細胞壁の主成分となる。ヘミセルロースは様々な糖が複雑に結合したもので、セルロース同士を繋ぐ役割を果たす。リグニンはフェノール性化合物が重合したもので、細胞壁を強化する役割を持つ。これらの繊維質が増えることで、土壌の排水性と保水性が向上する。また、土壌中の微生物のエサとなり、土壌の肥沃度向上にも貢献する。つまり、糖は植物の成長に不可欠なだけでなく、土壌環境の改善にも繋がる重要な物質である。

 

土壌の余剰な養分は緑肥に吸わせろ

/** Geminiが自動生成した概要 **/
土壌に過剰な養分が蓄積した場合、緑肥を栽培してその養分を吸収させ、その後すき込むことで土壌の状態が改善される現象について考察しています。過剰になりやすい養分として、カルシウム、リン酸、硝酸態窒素、硫酸塩を挙げ、緑肥によってこれらの成分、特に硝酸態窒素がどのように変化するのかを検証しようとしています。緑肥に吸収させた養分がすき込みによって土壌に還元されるにも関わらず、土壌の状態が改善される理由を探るという内容です。具体的には、まず硝酸態窒素の過剰状態に着目し、緑肥の活用による土壌改善メカニズムを解明していく予定です。

 

崩れて地肌が見えた箇所の下の方にハマエンドウ

/** Geminiが自動生成した概要 **/
井手ケ浜の崩落箇所で露頭した地肌の下方にハマエンドウが咲いていた。腐植のない地肌で根粒菌もいないため、ハマエンドウの発芽には疑問が残る。しかし、著者は上から流れ落ちた土に含まれていたマメが発芽した可能性を推測した。

 

鳥取の砂丘未熟土での栽培

/** Geminiが自動生成した概要 **/
鳥取砂丘未熟土での砂丘農業の様子を9年前の訪問時と今回を比較しながら紹介しています。砂丘未熟土は腐植が少なく保水・保肥力が低いという特徴があります。9年前、砂丘地帯の畑で頻繁に目にしたのは、畑の端に植えられた麦でした。これは風よけと緑肥としての役割を担い、砂と肥料分の流出を防ぐ効果があるとのこと。この麦の壁によって、海風から作物を守り、土壌や肥料分の保持に役立てているという砂丘農業の知恵が紹介されています。

 

もう、鶏糞で土作りなんて止めようよ

/** Geminiが自動生成した概要 **/
鶏糞堆肥は土壌改良に不向きであり、安価な窒素肥料として使うのも避けるべきです。鶏糞には多量の炭酸石灰とリン酸石灰が含まれており、使用すると土壌の石灰過剰につながり、カルシウム欠乏などの問題を引き起こす可能性があります。 しかし、鶏糞は窒素や石灰を豊富に含むため、窒素肥料としての活用は可能です。その場合は、土壌pH調整を事前に行わず、追肥として使用します。pH調整が必要な場合は、く溶性苦土やクエン酸溶液を併用します。 平飼い養鶏の鶏糞は腐植が多く、給餌の消化率も高いため、上記の注意点は当てはまりにくいでしょう。土壌改良には緑肥の活用が推奨されます。鶏糞を正しく理解し、適切に利用することで、効果的な肥料となります。

 

足元がキラリと光る植物のとっての地獄

/** Geminiが自動生成した概要 **/
ブラタモリ別府温泉の回で、温泉の源である由布火口の白い土壌が映し出された。これは風化しにくい石英が残り、植物の生育に不利な環境となっている。しかし、そこでススキらしき植物が育っているのを発見。通常、石英質の土壌では緑肥も効果が薄く、植物の生育は難しい。それなのに育つススキは、土壌を選ばない強い植物として知られる。著者は、このススキこそが、不利な土壌での栽培の鍵を握るのではないかと考え、現地調査を決意する。

 

栽培と畜産の未来のために補足

/** Geminiが自動生成した概要 **/
ヒマワリは土壌のリン酸吸収力を高める緑肥として有効です。リン酸を吸収したヒマワリを土にすき込むことで、土壌のリン酸過剰状態を改善できます。特に家畜糞堆肥の使用でリン酸値が高くなった土壌で有効です。ヒマワリは大きな根を張り、土壌深くのリン酸も吸収します。地上部はカリウムを多く含み、すき込みによりカリウムも土壌に供給できます。リン酸過剰でカリウム不足になりやすい土壌で、ヒマワリはバランスを整える効果を発揮します。ただし、ヒマワリは土壌の水分を多く吸収するため、乾燥に注意が必要です。

 

栽培と畜産の未来のために2

/** Geminiが自動生成した概要 **/
日本の栽培と畜産は肥料飼料を海外に依存している。食品残渣由来の有機肥料ですら、海外工場産のため輸入品。化学肥料も輸入燃料使用。飼料もトウモロコシ主体で輸入頼み。特に鶏は消化効率が悪く、鶏糞堆肥は実質輸入資源の塊。だからこそ、貴重な海外資源を日本で有効活用すべき。イネ科緑肥と組み合わせ、土壌へ確実に固定し、地下水汚染を防ぐことが重要。これが真の意味でのいいとこ取りであり、持続可能な農業への道。

 

栽培と畜産の未来のために

/** Geminiが自動生成した概要 **/
家畜糞堆肥は、土壌改良に有効な成分を含む一方で、過剰な硝酸態窒素や石灰、有機態リン酸の蓄積による問題も引き起こす。これを解決する手段として、イネ科緑肥の活用が有効である。イネ科緑肥は、これらの過剰成分を吸収し、土壌への悪影響を抑える。また、緑肥の生育状況から次作に必要な肥料を判断できる利点もある。耕作放棄地に家畜糞堆肥と緑肥を用いることで、新規就農者の初期費用を抑えつつ、安定した収量と品質を確保できる可能性がある。研修生への暖簾分けのような形で畑を提供する仕組みが確立されれば、耕作放棄地の減少、家畜糞処理の効率化、新規就農者の独立支援に繋がる。実際に、鶏糞堆肥とエンバクを用いたカボチャ栽培で無肥料・無農薬ながら高い秀品率を達成した事例も紹介されている。

 

老朽化水田は冬場の対応次第

/** Geminiが自動生成した概要 **/
老朽化水田の問題は、特定の肥料成分、特に硫酸石灰の残留と嫌気環境下でのガス化に起因する。硫酸イオンのガス化により土壌中の鉄が作物に吸収できない形に変換され、生育に悪影響を与える。大規模稲作では収穫後、水田に水を張ったまま放置することが多く、この嫌気状態がガス化を促進する。解決策として、収穫後に水を抜き、荒起こしを行い、土壌を酸素に触れさせることが重要。さらに、緑肥を栽培することで過剰な硫酸イオンを消費させ、土壌環境を改善できる。エンバクなどの耐寒性緑肥や、伝統的に利用されてきたレンゲも有効。これらの対策は、水田の持続的な利用に繋がる。

 

野菜の美味しさを求めて川へ

/** Geminiが自動生成した概要 **/
この記事は、河川敷に繁茂するオギに着目し、河川敷の刈草が優れた農業資材となる理由を解説しています。川の水にはカリウムやホウ素などのミネラルが豊富に含まれており、それを吸収したオギのような河川敷の植物は、畑で不足しがちなミネラルと保肥力を同時に供給できる貴重な資源となります。これは、カリウムが不足しやすい有機農法の欠点を補う有効な手段となります。記事では、カリウムを多く含む有機質肥料の開発が急務とされている背景に触れ、米ぬかやキノコの廃培地などの代替資材にも言及しています。最終的には、無肥料栽培の是非や、川から学ぶ緑肥の使い方など、持続可能な農業の実現に向けた考察へと展開しています。

 

センダングサは開拓する

/** Geminiが自動生成した概要 **/
師は1haの畑に木材チップを1600トン投入という常識外れの手法を用いた。通常、木材チップ過多は微生物が養分を消費し作物の生育を阻害すると考えられるが、3年以内に土地は安定し、豊かな土壌へと変化した。 この変化の立役者はアメリカセンダングサ。窒素飢餓が予想される環境下で繁茂し、強靭な根で大きな木片を貫通。脆くなった木片は容易に微生物分解が可能となり、土壌化を促進した。 センダングサは養分競争に勝ち、木片を破壊し土壌化を加速させる"開拓者"だった。有機物分解には微生物だけでなく、センダングサのような植物の物理的介入が不可欠であることを示唆する事例である。この経験は後に役立つという。

 

秋桜と書いてコスモス

/** Geminiが自動生成した概要 **/
秋桜と書いてコスモス。明治期に渡来したキク科の一年草で、痩せた乾燥地でも育つため緑肥として利用される。満開になると緑肥効果は半減する。キク科の緑肥は日本では少なく、連作障害回避に有効。コスモスの種まきは3〜7月なので、6月までに収穫が終わるエンドウ、ソラマメ、ジャガイモ、タマネギ、ニンニクなどの後に適していると考えられる。リン酸吸収にも効果があるヒマワリと同じキク科なので、コスモスも多量施肥作物の後に有効と推測される。

 

植物と土壌微生物は互いに助け合う

/** Geminiが自動生成した概要 **/
植物は土壌微生物と共生関係にあり、光合成産物と有用有機化合物を交換する。枯草菌の中には植物ホルモンのオーキシンを合成するものがあり、植物の根張りを促進する。オーキシンは植物の頂点で合成され根に届くまでに消費されるため、土壌中の枯草菌由来のオーキシンは根の成長に重要。枯草菌を増やすには、彼らが得意とする環境、つまり刈草のような環境を作る必要がある。納豆菌の例のように、特定の資材が豊富にあれば微生物は爆発的に増殖しコロニーを形成する。したがって、牛糞主体の土壌改良は、枯草菌の増殖には適さず、植物の生育促進には刈草成分が豊富な土壌が有効と考えられる。

 

支柱根は株を浮かせる程強靭な根

/** Geminiが自動生成した概要 **/
水田の縁に生えたトウモロコシのようなイネ科植物は、支柱根と呼ばれる太く強靭な不定根を持つ。これにより、植物は強固に根付き、背丈が高くなっても倒れない。支柱根は土壌改良にも貢献し、特にモロコシは団粒構造形成に効果的。支柱根は株を少し浮かせることで株元に隙間を作り、酸素供給を促すことで、更に強靭な根と株の成長を促進する役割も担っている。

 

夏といえばヒマワリの下で起こっている土壌の変化

/** Geminiが自動生成した概要 **/
ヒマワリは景観だけでなく、緑肥としても優れた機能を持つ。特に土壌に蓄積した吸収できないリン酸を、吸収可能な形に変える効果がある。リン酸は有機質肥料や家畜糞に多く含まれ、過剰になりやすい。過剰なリン酸はカルシウム過剰によるミネラル欠乏や、有機態リン酸による様々なミネラルのキレート化で秀品率低下につながる。ヒマワリは菌根菌の働きでリン酸を可給化し吸収、土壌に残すことでリン酸量を減らしつつ可給態リン酸を増やす。無機リン酸の可給化には有機態リン酸分解菌資材、有機態リン酸にはクエン酸併用が有効と考えられる。これらの組み合わせで土壌のリン酸状態を改善できる。

 

あそこからヤブガラシが消えた

/** Geminiが自動生成した概要 **/
ヤブガラシが生い茂っていた畑が、廃菌床と二次鉱物の投入により土質改善後、ほぼ消滅した。ヤブガラシは土壌の指標植物になり得るのか? 図鑑には記載がない。ヤブガラシが消えた土壌には弱酸性土壌の指標植物シロザが生育していた。シロザは土壌に良い影響を与える緑肥候補。ヤブガラシとシロザの生育時期は重なるため、ヤブガラシ優勢下ではシロザは育ちにくい。土壌pHが安定し緩衝能を持つ土壌ではヤブガラシは弱体化するようだ。ヤブガラシ旺盛な土壌は作物に不向き。ヤブガラシの繁茂は土壌改善のサインと言える。

 

目の前に広がるエノコロたち

/** Geminiが自動生成した概要 **/
エノコロは畑の状態を判断する指標となる。どこにでも生えるほど丈夫で、荒れ地でも実をつけ、良い環境では大きく育つ。人の背丈ほどになれば、作物にも理想的な環境であることを示す。 イネ科のエノコロはケイ酸を利用し、プラント・オパールとして土壌に腐植をもたらす。また、強い根は土壌を柔らかくし団粒構造を形成する。エノコロの背丈は根の深さと比例し、高いほど排水性と保水性が高い土壌を示す。 師は、自然に生えるエノコロの状態から土壌の良し悪しを判断し、収穫を予測していた。緑肥ではなく、自然発生のエノコロこそが環境を正確に反映していると言える。写真の土壌はまだ発展途上で、エノコロも低い。

 

エノコロを見て思い出す師の言葉

/** Geminiが自動生成した概要 **/
イネ科緑肥の効果について、筆者は窒素固定以外のメリットに着目する。イネ科緑肥は土壌物理性を改善し、後作の生育を促進すると言われるが、そのメカニズムは未解明な部分が多い。筆者は、イネ科植物の旺盛な根の成長が土壌構造を改善し、排水性と通気性を向上させると推測する。また、根の分泌物や残渣が土壌微生物相に影響を与え、養分保持力を高める可能性も指摘する。さらに、イネ科緑肥は他の雑草の抑制効果も期待できる。これらの効果は土壌の種類や気候条件によって異なるため、緑肥の効果的な活用には土壌診断と適切な緑肥種の選択が重要となる。

 

脇芽を知って、挿し木を知ろう

/** Geminiが自動生成した概要 **/
この記事では、植物の「脇芽」と「挿し木」の関係について解説しています。植物の茎には「原基」があり、そこから葉、根、枝(脇芽)が発生します。脇芽は別個体のように扱うことができ、挿し木はこの性質を利用した技術です。 挿し木は、脇芽を伸ばした枝を土に挿すことで、原基から根(不定根)が発生し、新しい個体として成長させる方法です。ソメイヨシノの増殖などに使われています。 脇芽は茎と葉柄の間に発生する、葉と茎を持った枝のような部分(シュート)です。このシュートを土に挿すと不定根が発生します。 サツマイモは、この挿し木がよく使われる作物の代表例です。

 

小葉が集まって複葉

/** Geminiが自動生成した概要 **/
三出複葉は、葉柄の先端に三枚の小葉がつく複葉の一種です。カタバミやクローバーがこの代表例です。一見すると茎から三枚の葉が出ているように見えますが、実際は葉柄の先端から小葉が出ているため、一枚の複葉として扱われます。この構造を理解することで、一見異なるカタバミとクローバーが、どちらも三出複葉を持つという共通点を持つことが分かります。さらに、茎から葉柄、葉柄から小葉という構造は、双子葉植物の基本モデルに合致し、植物の形態理解を深める上で重要な知識となります。

 

クローバのことは河川敷で学べ

/** Geminiが自動生成した概要 **/
シロクローバは匍匐茎を伸ばして広がるため、地表を覆うように生育する。この性質は土壌の乾燥防止や雑草抑制に効果的だが、背丈が低いため緑肥としての利用価値は高くなく、他の植物との競争にも弱い。一方、赤クローバは直立して生育し、背丈が高いため緑肥として適しており、根も深く伸びるため土壌改良効果も期待できる。河川敷のような自然環境を観察することで、植物の生育特性を直感的に理解し、緑肥としての利用価値を比較検討できる。実際には土壌条件や気候など様々な要因が影響するため、単純な比較だけでは最適な緑肥を選択できないが、実地観察は植物の特性を学ぶ上で貴重な経験となる。

 

連作障害に立ち向かう、忌地編

/** Geminiが自動生成した概要 **/
連作障害の原因の一つに、作物自身が出すアレロパシー物質の蓄積がある。アレロパシーとは、植物が他の植物の生育を阻害する物質(アレロケミカル)を放出する作用のこと。例として、ヘアリーベッチはシアナミドを放出し雑草の生育を抑制するが、高濃度では自身の生育にも悪影響を与える。シアナミドは石灰窒素にも含まれる成分で、雑草やセンチュウへの抑制効果がある。コムギやソバなどもアレロパシー物質を出し、連作障害を引き起こす一因となる。

 

線虫捕食菌という存在を忘れてはならない

/** Geminiが自動生成した概要 **/
連作障害の一因であるセンチュウ増加は、線虫捕食菌で抑制できる。線虫捕食菌はセンチュウを捕食する微生物で、生物農薬のパスツーリア・ペネトランスや木材腐朽菌などが該当する。木材腐朽菌、特にキノコの菌糸は、木材中の炭水化物から炭素を、センチュウから窒素を得て生育する。つまり、菌糸が蔓延した木材資材を土壌に施用すれば、センチュウ抑制効果が期待できる。廃菌床も有効で、休眠中のキノコ菌がセンチュウを捕食する可能性がある。これらの資材と緑肥を併用すれば、土壌環境の改善と収量向上に繋がるだろう。

 

連作障害を制する時は相手のことを知れ

/** Geminiが自動生成した概要 **/
緑肥は、育てた植物を土にすき込むことで土壌改良を行う手法です。主な効果は、土壌への有機物供給による地力向上、土壌構造の改善、特定の緑肥作物による線虫抑制です。 緑肥作物の種類によって効果が異なり、マメ科は窒素固定で土壌を豊かにし、イネ科は土壌病害抑制に効果があります。線虫抑制には、マリーゴールドが有名です。マリーゴールドの根から出る成分が線虫を抑制する効果があります。 緑肥は、連作障害対策としても有効です。連作によって特定の養分が不足したり、線虫が増殖するのを防ぎ、地力の維持・向上に役立ちます。緑肥の種類や栽培期間を適切に選択することで、土壌改良効果を高めることができます。

 

ヤンマー南丹支店さんで土壌の劣化と肥料の残留の話をしました

/** Geminiが自動生成した概要 **/
ヤンマー南丹支店にて、5週間に渡り土壌劣化と肥料残留について講演を実施。土壌分析、土作り、肥料効果、残留、緑肥活用を通じ、コストと労力を削減しつつ秀品率向上を目指す基礎を解説。保肥力向上で肥料使用量削減が可能だが、秀品率向上には肥料活用も重要。有機無機問わず肥料残留に留意が必要で、残留性の高い肥料が必要な場合も。しかし、残留肥料を洗い流す手法を理解すれば対応策が増え、長期的な秀品率向上に繋がる。

 

川は緑肥の使い方のヒントも教えてくれる

/** Geminiが自動生成した概要 **/
河川敷の石だらけの場所に育つ大きなアブラナを見て、緑肥の使い方について考察している。アブラナは窒素が少ない環境で土壌中の鉱物からミネラルを吸収する酸を放出する。河川敷は水が多く窒素が希薄なため、アブラナはそこで大きく育っていると考えられる。このことから、緑肥用アブラナは連作障害対策ではなく、真土を掘り起こしたり、土砂で劣化した畑の改善に役立つと推測。アブラナ科はホウ素要求量が多いため、土壌の鉱物の状態も重要。

 

昨日は節分だったので、歳の数だけダイズを食べた

/** Geminiが自動生成した概要 **/
著者は節分に大豆を食べたことをきっかけに、大豆とホウ素の関係について考察している。大豆にはイソフラボンが含まれ、女性の体調を整えるだけでなく、根粒菌の窒素固定にも関わっている。大豆はホウ素要求量が多い作物であり、日本ではホウ素を含む鉱物が少ないため、土壌中のホウ素が枯渇しやすい。しかし、大豆は古くから栽培されており、ホウ素欠乏で栽培不能になったことはない。これは、大豆作でホウ素を保持する仕組みがある可能性を示唆する。そして、過去にマメ科緑肥の効果が薄かったのは、土壌のホウ素欠乏が原因だったのではないかと推測している。ホウ素は鉱物由来で、日本には少ないため、現場をよく知る人は欠乏を懸念する一方、教科書だけの知識では欠乏しないと考える傾向がある。

 

ヤンマー南丹支店さんで土作りのもう一手として緑肥の選定の話をしました

/** Geminiが自動生成した概要 **/
ヤンマー南丹支店にて、土作りにおける緑肥選定の勉強会を開催。植物の根の規則性に基づいた選定方法を解説した。ヤンマーからは、排水性を向上させるトラクターオプションの紹介もあった。慣行農業・有機農業の枠を超え、土作りの根本に迫る内容となった。大規模農家が陥りがちな問題を、化学的手法で解決する時代が到来する可能性を示唆した。

 

ジャガイモを割ったら中が染まってた

/** Geminiが自動生成した概要 **/
もらったジャガイモを切ったら、中心部が褐色に変色していた。これは「褐色心腐」という生理障害で、ジャガイモの肥大期に高温乾燥状態におかれると発生する。つまり、夏から秋にかけて雨が少なく灌水しない、または土壌の保水性が低い場合に起こりやすい。ジャガイモ栽培では堆肥をあまり使わないため、乾燥しやすい。しかし、土を草で覆うことで乾燥を防げる。過去にジャガイモ畝にヘアリーベッチを植えると秀品率が向上するという結果を見たが、今回の褐色心腐の発生抑制にも効果があるかもしれない。 (ただし、写真の症状が褐色心腐ではない可能性もある。)

 

冬季の緑肥だとネキリムシが越冬するってよ

/** Geminiが自動生成した概要 **/
冬にエンバクなどの緑肥を育てると、ネキリムシが根元で越冬し、春の作付けで被害が増える可能性がある。冬耕しは越冬幼虫を減らす効果があるが、土壌への悪影響もある。ネキリムシ対策として、緑肥栽培のリスクと冬耕しのメリット・デメリットを比較検討し、被害を許容範囲に抑える作付け計画を立てる必要がある。具体的には、ネキリムシに抵抗性のある作物を選んだり、被害が出にくい時期に作付けするなどの工夫が求められる。

 

収穫後に現れるすごいやつ、シロザ

/** Geminiが自動生成した概要 **/
収穫後の畑に繁茂するシロザは、土壌改良に役立つ可能性がある。タデ科植物同様にシュウ酸を根から分泌し、土壌中のリンを可給化する役割が期待される。農業環境技術研究所の研究では、シロザはタデ科植物以上にシュウ酸分泌量が多いことが示されている。シロザは弱酸性土壌の指標植物であり、京都農販の好調な畑でも頻繁に観察される。これらのことから、シロザは酸性化しやすい収穫後の土壌環境を改善し、次作植物の生育を促進する役割を担っていると考えられる。

 

ススキの強さと窒素固定

/** Geminiが自動生成した概要 **/
ススキはセイタカアワダチソウの攻撃にも強く、群生することで勢力を拡大する。さらに、ススキは土壌微生物生態学によると、体内に窒素固定を行うエンドファイト窒素固定細菌と共生している。このため、マメ科植物のように窒素固定能力を持つ。ススキの旺盛な生育は昔から知られていたが、目立った特徴がなかったため窒素固定能力の発見は遅れた。

 

クローバの根の周りで何か起こってる

/** Geminiが自動生成した概要 **/
未熟な木質資材で窒素飢餓が起きる環境下で、シロツメクサだけが繁茂していた。他のイネ科植物の根には変化がない一方、シロツメクサの根は白い菌糸で覆われていた。この菌糸は木質資材を分解していると考えられ、シロツメクサは元気なことから共生関係にあると推測される。シロツメクサの根には他植物とは異なる特徴があり、それがこの現象に関係していると思われるが、詳細は次回に続く。

 

緑肥のヘアリーベッチの底力

/** Geminiが自動生成した概要 **/
栽培の師からヘアリーベッチの種を蒔くことを勧められ、肥料と共にばら撒いたところ、春先にベッチ以外の雑草が生えにくい現象に遭遇した。これはベッチのアレロパシー効果によるものと推測し、論文を調べたところ、ベッチがレタスの生育に影響を与えるという内容を確認、納得した。ベッチは越冬し春に繁茂するが、夏場には弱り、メヒシバやエノコログサが生えてくる。

 

殺作用があるといわれるマリーゴールド

/** Geminiが自動生成した概要 **/
マリーゴールドは、緑肥として土壌改良に利用される。土壌への有機物供給量が少ないため、その目的は養分供給ではなく、線虫抑制効果である。マリーゴールドが合成するテルチオフェンという物質に線虫への殺作用があり、根からの分泌や、植物体を土壌にすき込むことで効果を発揮する。連作障害の主要因である線虫対策として有効な手段と言える。マリーゴールドの更なる利点については、今後検討される。

 

マメ科の緑肥と窒素固定

/** Geminiが自動生成した概要 **/
ソルゴーなどのイネ科緑肥は土壌改良に有効だが、冬場はエンバクを、それ以外の緑肥としてはマメ科植物がある。マメ科緑肥の代表例はヘアリーベッチで、根粒菌との共生により窒素固定を行う。根粒菌は空気中の窒素ガスをアンモニウムイオンに変換し、植物がアミノ酸合成に利用できる形にする。そのため、マメ科緑肥は窒素肥料をあまり必要としない。一方、イネ科緑肥は多くの養分を必要とするため、堆肥などの資材投入が必要となる。つまり、資源が豊富な場所ではイネ科、そうでない場所ではマメ科緑肥が有効と言える。

 

緑肥を使いこなす前に

/** Geminiが自動生成した概要 **/
緑肥の効果は有機物投入だけでなく、植物の根の構造にも関係する。単子葉植物は多数の太い不定根を持ち、双子葉植物は中心の主根から側根を出す。単子葉のソルゴーは土壌の団粒構造形成に優れているが、双子葉のクローバーやヒマワリも緑肥として利用され、状況によってはソルゴー以上の効果を発揮する。緑肥を使いこなすには、単子葉と双子葉の根の違いを理解することが重要である。

 

緑肥を使いこなす

/** Geminiが自動生成した概要 **/
根の強い植物は土を柔らかくし、団粒構造を形成する。緑肥はこの性質を利用し、収穫を目的とせず土壌改良を行う。イネ科の植物、特にソルゴーは団粒構造形成に優れる。緑肥は安価な肥料で育て、大きく育ったら土に鋤き込むことで有機物を供給し、土壌構造を改善する。コスモスのような緑肥の効果は団粒構造形成以外にもあると考えられる。緑肥には栄養価の高い牧草が用いられ、土壌への栄養供給にも貢献する。

 

栽培していないところには緑肥を

/** Geminiが自動生成した概要 **/
コスモスが畑地や水田で咲き乱れていることがあるが、食用ではなく、花農家が育てているわけでもない。実はこれ、緑肥として育てられている。コスモスが一通り咲くと刈り倒され、土に鋤き込まれる。これは、植物由来の有機物を土に混ぜ込むために行われる。育った植物を刈り倒し、トラクターで土に混ぜ込むことで、土壌改良を行う。コスモスだけでなく、エンバクなども緑肥として利用される。なぜコスモスが選ばれたのかという疑問については、別の機会に解説される。

 

とにかくはやめに腐植を突っ込め

/** Geminiが自動生成した概要 **/
バーク堆肥を入れた区画と入れない区画で、植物の生育に大きな差が出た。バークを入れた側は草が生い茂り、入れない側はまばらだった。耕起や施肥は同じ条件で行ったため、この差はバーク堆肥の影響と考えられる。 このことから、植物が土壌環境を改善する作用を利用するには、まず植物が生えやすい環境を作るのが重要だと推測される。初期段階で腐植を大量投入すれば、植物の生育が促進され、理想的な土壌環境へ早く到達できる。また、土が柔らかくなることで作業効率も向上する。ただし、草抜きは増えるが、柔らかい土壌では容易に除去できる。

 

自分たちの未来は自分たちで決める

/** Geminiが自動生成した概要 **/
植物は自らの力で生育環境を改善する。根を張ることで水はけを良くし、他の植物の生育を阻害する。また、根は硬い土を砕き、土壌を柔らかくする。枯れた根は腐植となり、抜かれた後は土に空気が入る。つまり、植物は動けないながらも、根を通して水はけの改善、土壌改良を行い、自らの生育に適した環境を作り出している。この性質を利用した緑肥もあるが、それは別の話。


Powered by SOY CMS   ↑トップへ